钨颗粒增强锆基大块金属玻璃复合材料穿透半无限目标时的行为

IF 4.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Intermetallics Pub Date : 2025-02-01 DOI:10.1016/j.intermet.2024.108601
Huie Hu , Haoyu Jin , Junhan Chi , Yifan Du , Yunfei Ma
{"title":"钨颗粒增强锆基大块金属玻璃复合材料穿透半无限目标时的行为","authors":"Huie Hu ,&nbsp;Haoyu Jin ,&nbsp;Junhan Chi ,&nbsp;Yifan Du ,&nbsp;Yunfei Ma","doi":"10.1016/j.intermet.2024.108601","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the penetration behavior of 50 % vol. W-reinforced Zr-based bulk metallic glass composites (W<sub>p</sub>/Zr-BMGCs) with W particle sizes of 30, 75, and 250 μm using semi-infinite target penetration tests. The composites and craters were characterized via X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The impact velocities during the tests were approximately 850 and 1250 m s<sup>−1</sup>. The results show that the penetration depth of the W<sub>p</sub>/Zr-BMGCs at high impact velocities is greater than that at low impact velocities. At similar impact velocities, the smaller the particle sizes constituting the reinforcing phase, the greater the penetration depth. Among the composites, W<sub>p</sub>/Zr-BMGC with a W particle size of 30 μm achieves a maximum penetration depth of 10.62 mm at an impact velocity of 1283.8 m s<sup>−1</sup>. During penetration, the Zr-based amorphous phase melts and W particles primarily undergo plastic deformation. Adiabatic shear bands generated during penetration promote the nucleation and propagation of voids and cracks, resulting in target-plate damage. High-speed penetration-induced unloading waves generate coronal cracks near the bottom of the crater, accelerating target-plate damage. The good penetration capability of the W<sub>p</sub>/Zr-based amorphous composite with 30-μm W particles may be related to the beneficial effects of the small W particles on interfacial bonding.</div></div>","PeriodicalId":331,"journal":{"name":"Intermetallics","volume":"177 ","pages":"Article 108601"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Behavior of tungsten-particle-reinforced Zirconium-based bulk metallic glass composites when penetrating a semi-infinite target\",\"authors\":\"Huie Hu ,&nbsp;Haoyu Jin ,&nbsp;Junhan Chi ,&nbsp;Yifan Du ,&nbsp;Yunfei Ma\",\"doi\":\"10.1016/j.intermet.2024.108601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the penetration behavior of 50 % vol. W-reinforced Zr-based bulk metallic glass composites (W<sub>p</sub>/Zr-BMGCs) with W particle sizes of 30, 75, and 250 μm using semi-infinite target penetration tests. The composites and craters were characterized via X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The impact velocities during the tests were approximately 850 and 1250 m s<sup>−1</sup>. The results show that the penetration depth of the W<sub>p</sub>/Zr-BMGCs at high impact velocities is greater than that at low impact velocities. At similar impact velocities, the smaller the particle sizes constituting the reinforcing phase, the greater the penetration depth. Among the composites, W<sub>p</sub>/Zr-BMGC with a W particle size of 30 μm achieves a maximum penetration depth of 10.62 mm at an impact velocity of 1283.8 m s<sup>−1</sup>. During penetration, the Zr-based amorphous phase melts and W particles primarily undergo plastic deformation. Adiabatic shear bands generated during penetration promote the nucleation and propagation of voids and cracks, resulting in target-plate damage. High-speed penetration-induced unloading waves generate coronal cracks near the bottom of the crater, accelerating target-plate damage. The good penetration capability of the W<sub>p</sub>/Zr-based amorphous composite with 30-μm W particles may be related to the beneficial effects of the small W particles on interfacial bonding.</div></div>\",\"PeriodicalId\":331,\"journal\":{\"name\":\"Intermetallics\",\"volume\":\"177 \",\"pages\":\"Article 108601\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intermetallics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0966979524004205\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intermetallics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0966979524004205","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用半无限靶侵彻试验研究了W粒径分别为30、75和250 μm的50%体积W增强zr基块状金属玻璃复合材料(Wp/Zr-BMGCs)的侵彻行为。通过x射线衍射、光学显微镜、扫描电镜和能量色散x射线能谱对复合材料和弹坑进行了表征。试验期间的冲击速度约为850和1250 m s - 1。结果表明:高冲击速度下Wp/ zr - bmgc的侵彻深度大于低冲击速度下的侵彻深度;在相同的冲击速度下,构成增强相的颗粒尺寸越小,穿透深度越大。其中,W粒径为30 μm的Wp/Zr-BMGC在1283.8 m s−1的冲击速度下,最大侵彻深度为10.62 mm。在侵彻过程中,锆基非晶相熔化,W颗粒主要发生塑性变形。穿透过程中产生的绝热剪切带促进了空洞和裂纹的形核和扩展,导致靶板损伤。高速穿透引起的卸荷波在火山口底部附近产生日冕裂缝,加速靶板的损坏。30 μm W颗粒的Wp/ zr基非晶复合材料具有良好的渗透性能,可能与小W颗粒对界面结合的有利作用有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Behavior of tungsten-particle-reinforced Zirconium-based bulk metallic glass composites when penetrating a semi-infinite target
This study investigates the penetration behavior of 50 % vol. W-reinforced Zr-based bulk metallic glass composites (Wp/Zr-BMGCs) with W particle sizes of 30, 75, and 250 μm using semi-infinite target penetration tests. The composites and craters were characterized via X-ray diffraction, optical microscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The impact velocities during the tests were approximately 850 and 1250 m s−1. The results show that the penetration depth of the Wp/Zr-BMGCs at high impact velocities is greater than that at low impact velocities. At similar impact velocities, the smaller the particle sizes constituting the reinforcing phase, the greater the penetration depth. Among the composites, Wp/Zr-BMGC with a W particle size of 30 μm achieves a maximum penetration depth of 10.62 mm at an impact velocity of 1283.8 m s−1. During penetration, the Zr-based amorphous phase melts and W particles primarily undergo plastic deformation. Adiabatic shear bands generated during penetration promote the nucleation and propagation of voids and cracks, resulting in target-plate damage. High-speed penetration-induced unloading waves generate coronal cracks near the bottom of the crater, accelerating target-plate damage. The good penetration capability of the Wp/Zr-based amorphous composite with 30-μm W particles may be related to the beneficial effects of the small W particles on interfacial bonding.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Intermetallics
Intermetallics 工程技术-材料科学:综合
CiteScore
7.80
自引率
9.10%
发文量
291
审稿时长
37 days
期刊介绍: This journal is a platform for publishing innovative research and overviews for advancing our understanding of the structure, property, and functionality of complex metallic alloys, including intermetallics, metallic glasses, and high entropy alloys. The journal reports the science and engineering of metallic materials in the following aspects: Theories and experiments which address the relationship between property and structure in all length scales. Physical modeling and numerical simulations which provide a comprehensive understanding of experimental observations. Stimulated methodologies to characterize the structure and chemistry of materials that correlate the properties. Technological applications resulting from the understanding of property-structure relationship in materials. Novel and cutting-edge results warranting rapid communication. The journal also publishes special issues on selected topics and overviews by invitation only.
期刊最新文献
Editorial Board Study on elastic properties, fracture toughness, electronic properties and thermal conductivity of the M-Mg(ZnAlCu)2 phase in aluminum alloys via first-principles calculations and experiments Synergistic strengthening and microstructure evolution of laser-cladded CoCrFeNiWx high-entropy alloy coatings with enhanced thermal fatigue and wear resistance Achieving synergistic enhancement of wear resistance and plasticity in (TiB+Ti5Si3)/TC4 composites with dual quasi-continuous network structure via reinforcement content control Microstructure and hydrogen sorption of severely deformed TaTiVCrFe and ZrTiVCrFe refractory high-entropy alloys
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1