{"title":"磁流变弹性体短、长期剪应力松弛行为的实验研究与数值模拟","authors":"Tran Huu Nam, Iva Petríková, Bohdana Marvalová","doi":"10.1007/s11043-024-09760-x","DOIUrl":null,"url":null,"abstract":"<div><p>An experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of nonaligned and aligned magnetorheological elastomers (MREs) were investigated. The aligned MRE was created by aligning micro-size carbonyl iron particles in chains in silicon rubber using an external magnetic field during the curing process, while the nonaligned MRE was fabricated without applying a magnetic field. The effects of permanent magnetic fields on the shear stress relaxation of the nonaligned and aligned MREs were examined using the double-lap shear stress relaxation test with a short-term period of 1200 s and a long-term period of <span>\\(1.08 \\times 10^{6}\\text{ s}\\)</span>. The shear stress and relaxation modulus of the nonaligned and aligned MREs increased considerably with the rise of magnetic flux density to about 500 mT and then enhanced slightly above 500 mT. The shear stress and relaxation modulus of the aligned MRE were considerably higher than those of the nonaligned one. The shear stress relaxation of the nonaligned and aligned MREs was numerically simulated using the fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MREs. The shear stress estimated from the investigated model with fitted parameters was in excellent agreement with the short-term experimental data of the MREs measured under different magnetic fields. Besides, the short-term model-fitted parameters were used to predict the long-term shear stress relaxation of the nonaligned and aligned MREs. The largest difference between model-predicted and long-term measured results for the nonaligned and aligned MREs was less than 1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the nonaligned and aligned MREs.</p></div>","PeriodicalId":698,"journal":{"name":"Mechanics of Time-Dependent Materials","volume":"29 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11043-024-09760-x.pdf","citationCount":"0","resultStr":"{\"title\":\"Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers\",\"authors\":\"Tran Huu Nam, Iva Petríková, Bohdana Marvalová\",\"doi\":\"10.1007/s11043-024-09760-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of nonaligned and aligned magnetorheological elastomers (MREs) were investigated. The aligned MRE was created by aligning micro-size carbonyl iron particles in chains in silicon rubber using an external magnetic field during the curing process, while the nonaligned MRE was fabricated without applying a magnetic field. The effects of permanent magnetic fields on the shear stress relaxation of the nonaligned and aligned MREs were examined using the double-lap shear stress relaxation test with a short-term period of 1200 s and a long-term period of <span>\\\\(1.08 \\\\times 10^{6}\\\\text{ s}\\\\)</span>. The shear stress and relaxation modulus of the nonaligned and aligned MREs increased considerably with the rise of magnetic flux density to about 500 mT and then enhanced slightly above 500 mT. The shear stress and relaxation modulus of the aligned MRE were considerably higher than those of the nonaligned one. The shear stress relaxation of the nonaligned and aligned MREs was numerically simulated using the fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MREs. The shear stress estimated from the investigated model with fitted parameters was in excellent agreement with the short-term experimental data of the MREs measured under different magnetic fields. Besides, the short-term model-fitted parameters were used to predict the long-term shear stress relaxation of the nonaligned and aligned MREs. The largest difference between model-predicted and long-term measured results for the nonaligned and aligned MREs was less than 1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the nonaligned and aligned MREs.</p></div>\",\"PeriodicalId\":698,\"journal\":{\"name\":\"Mechanics of Time-Dependent Materials\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11043-024-09760-x.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mechanics of Time-Dependent Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11043-024-09760-x\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics of Time-Dependent Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11043-024-09760-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0
摘要
对非排列和排列磁流变弹性体(MREs)的短期和长期剪切应力松弛行为进行了实验研究和数值模拟。在硅橡胶固化过程中,利用外加磁场将微尺寸羰基铁颗粒排列成链状,制备出定向MRE,而在不施加磁场的情况下制备出非定向MRE。采用短期1200s和长期\(1.08 \times 10^{6}\text{ s}\)的双搭接剪切应力松弛试验,研究了永磁场对不列和列列磁流变仪剪切应力松弛的影响。当磁通密度增加到500 mT左右时,非排列和排列的MRE剪切应力和弛豫模量均显著增加,在500 mT以上略有增加,排列的MRE剪切应力和弛豫模量明显高于非排列的MRE。采用分数阶导数粘弹性Kelvin-Voigt模型,对非排列和排列MREs的剪应力松弛进行了数值模拟。通过对MREs的短期实测数据拟合松弛模量,确定了模型参数。经拟合参数计算得到的剪切应力与不同磁场下的核磁共振成像短期实验数据吻合良好。此外,利用短期模型拟合参数预测了非排列和排列mre的长期剪应力松弛。非对齐和对齐MREs的模型预测结果与长期测量结果之间的最大差异小于1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the nonaligned and aligned MREs.
Experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of magnetorheological elastomers
An experimental study and numerical simulation of short- and long-term shear stress relaxation behaviors of nonaligned and aligned magnetorheological elastomers (MREs) were investigated. The aligned MRE was created by aligning micro-size carbonyl iron particles in chains in silicon rubber using an external magnetic field during the curing process, while the nonaligned MRE was fabricated without applying a magnetic field. The effects of permanent magnetic fields on the shear stress relaxation of the nonaligned and aligned MREs were examined using the double-lap shear stress relaxation test with a short-term period of 1200 s and a long-term period of \(1.08 \times 10^{6}\text{ s}\). The shear stress and relaxation modulus of the nonaligned and aligned MREs increased considerably with the rise of magnetic flux density to about 500 mT and then enhanced slightly above 500 mT. The shear stress and relaxation modulus of the aligned MRE were considerably higher than those of the nonaligned one. The shear stress relaxation of the nonaligned and aligned MREs was numerically simulated using the fractional derivative viscoelastic Kelvin–Voigt model. The model parameters were identified by fitting the relaxation modulus to the short-term measured data of the MREs. The shear stress estimated from the investigated model with fitted parameters was in excellent agreement with the short-term experimental data of the MREs measured under different magnetic fields. Besides, the short-term model-fitted parameters were used to predict the long-term shear stress relaxation of the nonaligned and aligned MREs. The largest difference between model-predicted and long-term measured results for the nonaligned and aligned MREs was less than 1%. Therefore, the studied model can be used to predict the long-term shear stress relaxation of the nonaligned and aligned MREs.
期刊介绍:
Mechanics of Time-Dependent Materials accepts contributions dealing with the time-dependent mechanical properties of solid polymers, metals, ceramics, concrete, wood, or their composites. It is recognized that certain materials can be in the melt state as function of temperature and/or pressure. Contributions concerned with fundamental issues relating to processing and melt-to-solid transition behaviour are welcome, as are contributions addressing time-dependent failure and fracture phenomena. Manuscripts addressing environmental issues will be considered if they relate to time-dependent mechanical properties.
The journal promotes the transfer of knowledge between various disciplines that deal with the properties of time-dependent solid materials but approach these from different angles. Among these disciplines are: Mechanical Engineering, Aerospace Engineering, Chemical Engineering, Rheology, Materials Science, Polymer Physics, Design, and others.