通过戗点和风口迁移之间的反馈作用实现路肩型陡崖的演变

IF 3.5 2区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Journal of Geophysical Research: Earth Surface Pub Date : 2025-01-24 DOI:10.1029/2024JF007928
Tianyue Qu, Eitan Shelef, Liran Goren, Elhanan Harel, Omri Porat
{"title":"通过戗点和风口迁移之间的反馈作用实现路肩型陡崖的演变","authors":"Tianyue Qu,&nbsp;Eitan Shelef,&nbsp;Liran Goren,&nbsp;Elhanan Harel,&nbsp;Omri Porat","doi":"10.1029/2024JF007928","DOIUrl":null,"url":null,"abstract":"<p>Escarpments and cliffs (hereafter termed escarpments) form topographic barriers that influence the spatial patterns of climate and biodiversity. The inherent extreme slope change across the escarpment edge promotes escarpment retreat over time. Typically, escarpments are divided into arch- and shoulder-types. In arch-type, the drainage divide is located inland, and knickpoints, located where channels flow across the escarpment, can retreat and embay the escarpment. In shoulder-type, the divide aligns with the escarpment edge, a setting expected to cause a slow and uniform escarpment retreat, preserving their integrity as barriers through time. However, observations from around the globe reveal shoulder-type escarpments are associated with deep embayments (i.e., alcoves) that destroy the linear appearance of the escarpment front. Yet, the processes that produce and sustain these embayments remain largely unexplored. Embayments of shoulder-type escarpments typically occur along reversed channels which were part of the antecedent drainage that used to flow away from the escarpment but now flow toward it, often resulting in a valley confined drainage divide called a windgap. Here, we hypothesize that feedback between knickpoint retreat and windgap migration away from the escarpment along reversed channels can sustain escarpment embayments, and use topographic analyses and numerical simulations to explore this hypothesis. Our analyses, focused on field sites in the Negev Desert, show that embayments of shoulder-type escarpments can be sustained through the hypothesized feedback, and quantify the sensitivity of this feedback to geomorphologic and lithologic parameters. Results suggest that this feedback may explain some of the global variability of escarpment morphologies.</p>","PeriodicalId":15887,"journal":{"name":"Journal of Geophysical Research: Earth Surface","volume":"130 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007928","citationCount":"0","resultStr":"{\"title\":\"Evolution of Shoulder Type Escarpments Through Feedback Between Knickpoint and Windgap Migration\",\"authors\":\"Tianyue Qu,&nbsp;Eitan Shelef,&nbsp;Liran Goren,&nbsp;Elhanan Harel,&nbsp;Omri Porat\",\"doi\":\"10.1029/2024JF007928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Escarpments and cliffs (hereafter termed escarpments) form topographic barriers that influence the spatial patterns of climate and biodiversity. The inherent extreme slope change across the escarpment edge promotes escarpment retreat over time. Typically, escarpments are divided into arch- and shoulder-types. In arch-type, the drainage divide is located inland, and knickpoints, located where channels flow across the escarpment, can retreat and embay the escarpment. In shoulder-type, the divide aligns with the escarpment edge, a setting expected to cause a slow and uniform escarpment retreat, preserving their integrity as barriers through time. However, observations from around the globe reveal shoulder-type escarpments are associated with deep embayments (i.e., alcoves) that destroy the linear appearance of the escarpment front. Yet, the processes that produce and sustain these embayments remain largely unexplored. Embayments of shoulder-type escarpments typically occur along reversed channels which were part of the antecedent drainage that used to flow away from the escarpment but now flow toward it, often resulting in a valley confined drainage divide called a windgap. Here, we hypothesize that feedback between knickpoint retreat and windgap migration away from the escarpment along reversed channels can sustain escarpment embayments, and use topographic analyses and numerical simulations to explore this hypothesis. Our analyses, focused on field sites in the Negev Desert, show that embayments of shoulder-type escarpments can be sustained through the hypothesized feedback, and quantify the sensitivity of this feedback to geomorphologic and lithologic parameters. Results suggest that this feedback may explain some of the global variability of escarpment morphologies.</p>\",\"PeriodicalId\":15887,\"journal\":{\"name\":\"Journal of Geophysical Research: Earth Surface\",\"volume\":\"130 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JF007928\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Earth Surface\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007928\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Earth Surface","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JF007928","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evolution of Shoulder Type Escarpments Through Feedback Between Knickpoint and Windgap Migration

Escarpments and cliffs (hereafter termed escarpments) form topographic barriers that influence the spatial patterns of climate and biodiversity. The inherent extreme slope change across the escarpment edge promotes escarpment retreat over time. Typically, escarpments are divided into arch- and shoulder-types. In arch-type, the drainage divide is located inland, and knickpoints, located where channels flow across the escarpment, can retreat and embay the escarpment. In shoulder-type, the divide aligns with the escarpment edge, a setting expected to cause a slow and uniform escarpment retreat, preserving their integrity as barriers through time. However, observations from around the globe reveal shoulder-type escarpments are associated with deep embayments (i.e., alcoves) that destroy the linear appearance of the escarpment front. Yet, the processes that produce and sustain these embayments remain largely unexplored. Embayments of shoulder-type escarpments typically occur along reversed channels which were part of the antecedent drainage that used to flow away from the escarpment but now flow toward it, often resulting in a valley confined drainage divide called a windgap. Here, we hypothesize that feedback between knickpoint retreat and windgap migration away from the escarpment along reversed channels can sustain escarpment embayments, and use topographic analyses and numerical simulations to explore this hypothesis. Our analyses, focused on field sites in the Negev Desert, show that embayments of shoulder-type escarpments can be sustained through the hypothesized feedback, and quantify the sensitivity of this feedback to geomorphologic and lithologic parameters. Results suggest that this feedback may explain some of the global variability of escarpment morphologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Earth Surface
Journal of Geophysical Research: Earth Surface Earth and Planetary Sciences-Earth-Surface Processes
CiteScore
6.30
自引率
10.30%
发文量
162
期刊最新文献
Automated Mapping of Braided Palaeochannels From Optical Images With Deep Learning Methods Knickpoint Dynamics During the Outward Growth of the Northeastern Tibetan Plateau Two Decades of Dust Radiative Forcing on Snow Cover Across the Great Salt Lake Basin Future Trajectories of Peatland Permafrost Under Climate and Ecosystem Change in Northeastern Canada Deciphering Landslide Precursors From Spatiotemporal Ground Motion Using Persistent Homology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1