有前途的铁氧体尖晶石氧化物 XFe2O4(X = Ge 和 Sm)的结构、机械、热和磁电子特性研究:第一原理方法

IF 2.3 3区 化学 Q3 CHEMISTRY, PHYSICAL International Journal of Quantum Chemistry Pub Date : 2025-01-24 DOI:10.1002/qua.70009
Tahira Bashir, Khalid M. Alotaibi, Sajad Ali, Hayat Ullah, Kashif Safeen, Akif Safeen,  Immad-Uddin, Yousuf Iqbal, Syed Taj Ud Din
{"title":"有前途的铁氧体尖晶石氧化物 XFe2O4(X = Ge 和 Sm)的结构、机械、热和磁电子特性研究:第一原理方法","authors":"Tahira Bashir,&nbsp;Khalid M. Alotaibi,&nbsp;Sajad Ali,&nbsp;Hayat Ullah,&nbsp;Kashif Safeen,&nbsp;Akif Safeen,&nbsp; Immad-Uddin,&nbsp;Yousuf Iqbal,&nbsp;Syed Taj Ud Din","doi":"10.1002/qua.70009","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>This study employs first-principles computations to analyze ferrite spinels GeFe<sub>2</sub>O<sub>4</sub> and SmFe<sub>2</sub>O<sub>4</sub> using density functional theory (DFT). Structural stability calculations reveal that GeFe<sub>2</sub>O<sub>4</sub> favors an antiferromagnetic phase, while SmFe<sub>2</sub>O<sub>4</sub> stabilizes in a ferrimagnetic phase. Both compounds are elastically stable and ductile, and exhibit lattice constants consistent with experimental values, validating the reliability of the calculations. A significant drop in Debye temperature (from 495 to 233 K) occurs when Ge is replaced by Sm, while high melting temperatures indicate thermal stability over broad temperature ranges. The spin-polarized electronic band structure confirms the metallic nature of both materials. Furthermore, the Curie temperature and magnetic moment of SmFe<sub>2</sub>O<sub>4</sub>, calculated using Generalized Gradient Approximation (GGA + U) and the Heyd–Scuseria–Ernzerhof (HSE) methods, underline its potential for spintronic applications.</p>\n </div>","PeriodicalId":182,"journal":{"name":"International Journal of Quantum Chemistry","volume":"125 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the Structural, Mechanical, Thermal, and Magneto-Electronic Properties of Promising Ferrite Spinel Oxides XFe2O4 (X = Ge and Sm): A First-Principle Approach\",\"authors\":\"Tahira Bashir,&nbsp;Khalid M. Alotaibi,&nbsp;Sajad Ali,&nbsp;Hayat Ullah,&nbsp;Kashif Safeen,&nbsp;Akif Safeen,&nbsp; Immad-Uddin,&nbsp;Yousuf Iqbal,&nbsp;Syed Taj Ud Din\",\"doi\":\"10.1002/qua.70009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>This study employs first-principles computations to analyze ferrite spinels GeFe<sub>2</sub>O<sub>4</sub> and SmFe<sub>2</sub>O<sub>4</sub> using density functional theory (DFT). Structural stability calculations reveal that GeFe<sub>2</sub>O<sub>4</sub> favors an antiferromagnetic phase, while SmFe<sub>2</sub>O<sub>4</sub> stabilizes in a ferrimagnetic phase. Both compounds are elastically stable and ductile, and exhibit lattice constants consistent with experimental values, validating the reliability of the calculations. A significant drop in Debye temperature (from 495 to 233 K) occurs when Ge is replaced by Sm, while high melting temperatures indicate thermal stability over broad temperature ranges. The spin-polarized electronic band structure confirms the metallic nature of both materials. Furthermore, the Curie temperature and magnetic moment of SmFe<sub>2</sub>O<sub>4</sub>, calculated using Generalized Gradient Approximation (GGA + U) and the Heyd–Scuseria–Ernzerhof (HSE) methods, underline its potential for spintronic applications.</p>\\n </div>\",\"PeriodicalId\":182,\"journal\":{\"name\":\"International Journal of Quantum Chemistry\",\"volume\":\"125 3\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Quantum Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/qua.70009\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Quantum Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/qua.70009","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigation of the Structural, Mechanical, Thermal, and Magneto-Electronic Properties of Promising Ferrite Spinel Oxides XFe2O4 (X = Ge and Sm): A First-Principle Approach

This study employs first-principles computations to analyze ferrite spinels GeFe2O4 and SmFe2O4 using density functional theory (DFT). Structural stability calculations reveal that GeFe2O4 favors an antiferromagnetic phase, while SmFe2O4 stabilizes in a ferrimagnetic phase. Both compounds are elastically stable and ductile, and exhibit lattice constants consistent with experimental values, validating the reliability of the calculations. A significant drop in Debye temperature (from 495 to 233 K) occurs when Ge is replaced by Sm, while high melting temperatures indicate thermal stability over broad temperature ranges. The spin-polarized electronic band structure confirms the metallic nature of both materials. Furthermore, the Curie temperature and magnetic moment of SmFe2O4, calculated using Generalized Gradient Approximation (GGA + U) and the Heyd–Scuseria–Ernzerhof (HSE) methods, underline its potential for spintronic applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Quantum Chemistry
International Journal of Quantum Chemistry 化学-数学跨学科应用
CiteScore
4.70
自引率
4.50%
发文量
185
审稿时长
2 months
期刊介绍: Since its first formulation quantum chemistry has provided the conceptual and terminological framework necessary to understand atoms, molecules and the condensed matter. Over the past decades synergistic advances in the methodological developments, software and hardware have transformed quantum chemistry in a truly interdisciplinary science that has expanded beyond its traditional core of molecular sciences to fields as diverse as chemistry and catalysis, biophysics, nanotechnology and material science.
期刊最新文献
Theoretical Insights of the Non-Rigid Behavior of Benzophenone by Franck-Condon Factors Approach DFT Investigations of Non-Toxic Perovskites RbZnX3 (X = F, Cl, and Br): Analyzing the Structural, Electrical, Optical, Mechanical, and Thermodynamic Properties for Suitable Optoelectronic Applications Structures and Electronic Properties of TMPb16−/0/+ (TM = Sc, Y, Ti, Zr, Hf) Clusters Issue Information Unraveling Surface Chemistry of SnO2 Through Formation of Charged Oxygen Species and Oxygen Vacancies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1