研究非线性粘弹性粘合对接在拉伸-扭转多路径循环载荷下的疲劳行为

IF 3.1 2区 材料科学 Q2 ENGINEERING, MECHANICAL Fatigue & Fracture of Engineering Materials & Structures Pub Date : 2024-12-30 DOI:10.1111/ffe.14556
Jin-Yang Zhang, Hong Jia, Jun Zhang
{"title":"研究非线性粘弹性粘合对接在拉伸-扭转多路径循环载荷下的疲劳行为","authors":"Jin-Yang Zhang,&nbsp;Hong Jia,&nbsp;Jun Zhang","doi":"10.1111/ffe.14556","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The tension–torsion multipath cyclic loading experiments of the nonlinear viscoelastic adhesive bonding butt joints were conducted with the asymmetric strain-control mode, and the effect of loading path and strain strength on the mechanical behavior of the joint was observed through the dissipated energy and the cyclic stress response. It was found that the loading path had influences on the fatigue damage and nonproportional strain loading path had additional fatigue damage to the joints. Meanwhile, the initial decline rate of dissipated energy and cyclic stress increased with the increase of equivalent mean strain (EMS) and equivalent strain amplitude (ESA) have been observed. In addition, the uniaxial cyclic damage model was extended to a tension–torsion fatigue damage model by adding a path factor into the tensile and torsional cyclic damage model. The model calculated results showed that the proposed model could better predict the loading path–dependent fatigue behavior of the joint.</p>\n </div>","PeriodicalId":12298,"journal":{"name":"Fatigue & Fracture of Engineering Materials & Structures","volume":"48 3","pages":"1288-1300"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating Loading Path–Dependent Fatigue Behavior of Nonlinear Viscoelastic Adhesive Bonding Butt Joints Under Tension–Torsion Multipath Cyclic Loading\",\"authors\":\"Jin-Yang Zhang,&nbsp;Hong Jia,&nbsp;Jun Zhang\",\"doi\":\"10.1111/ffe.14556\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The tension–torsion multipath cyclic loading experiments of the nonlinear viscoelastic adhesive bonding butt joints were conducted with the asymmetric strain-control mode, and the effect of loading path and strain strength on the mechanical behavior of the joint was observed through the dissipated energy and the cyclic stress response. It was found that the loading path had influences on the fatigue damage and nonproportional strain loading path had additional fatigue damage to the joints. Meanwhile, the initial decline rate of dissipated energy and cyclic stress increased with the increase of equivalent mean strain (EMS) and equivalent strain amplitude (ESA) have been observed. In addition, the uniaxial cyclic damage model was extended to a tension–torsion fatigue damage model by adding a path factor into the tensile and torsional cyclic damage model. The model calculated results showed that the proposed model could better predict the loading path–dependent fatigue behavior of the joint.</p>\\n </div>\",\"PeriodicalId\":12298,\"journal\":{\"name\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"volume\":\"48 3\",\"pages\":\"1288-1300\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fatigue & Fracture of Engineering Materials & Structures\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14556\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fatigue & Fracture of Engineering Materials & Structures","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ffe.14556","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Investigating Loading Path–Dependent Fatigue Behavior of Nonlinear Viscoelastic Adhesive Bonding Butt Joints Under Tension–Torsion Multipath Cyclic Loading

The tension–torsion multipath cyclic loading experiments of the nonlinear viscoelastic adhesive bonding butt joints were conducted with the asymmetric strain-control mode, and the effect of loading path and strain strength on the mechanical behavior of the joint was observed through the dissipated energy and the cyclic stress response. It was found that the loading path had influences on the fatigue damage and nonproportional strain loading path had additional fatigue damage to the joints. Meanwhile, the initial decline rate of dissipated energy and cyclic stress increased with the increase of equivalent mean strain (EMS) and equivalent strain amplitude (ESA) have been observed. In addition, the uniaxial cyclic damage model was extended to a tension–torsion fatigue damage model by adding a path factor into the tensile and torsional cyclic damage model. The model calculated results showed that the proposed model could better predict the loading path–dependent fatigue behavior of the joint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.30
自引率
18.90%
发文量
256
审稿时长
4 months
期刊介绍: Fatigue & Fracture of Engineering Materials & Structures (FFEMS) encompasses the broad topic of structural integrity which is founded on the mechanics of fatigue and fracture, and is concerned with the reliability and effectiveness of various materials and structural components of any scale or geometry. The editors publish original contributions that will stimulate the intellectual innovation that generates elegant, effective and economic engineering designs. The journal is interdisciplinary and includes papers from scientists and engineers in the fields of materials science, mechanics, physics, chemistry, etc.
期刊最新文献
Issue Information Issue Information Fatigue Design Curves for Industrial Applications: A Review A High Load Clipping Criterion Based on the Probabilistic Extreme Load of Fatigue Spectrum The Dual Role of Nb Microalloying on the High-Cycle Fatigue of 1.0%C–1.5%Cr Bearing Steel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1