{"title":"稳定少原子铂簇催化剂的纳米级限制策略","authors":"","doi":"10.1038/s44286-025-00173-2","DOIUrl":null,"url":null,"abstract":"Supported noble metal catalysts are widely applied in hydrogenation catalysis but are limited by their high costs and susceptibility to sintering. Now, a nanoscale confinement strategy is developed to stabilize few-atom platinum clusters, preserving their nuclearity and catalytic activity under harsh reaction conditions.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 1","pages":"32-33"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoscale confinement strategy for the stabilization of few-atom platinum cluster catalysts\",\"authors\":\"\",\"doi\":\"10.1038/s44286-025-00173-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Supported noble metal catalysts are widely applied in hydrogenation catalysis but are limited by their high costs and susceptibility to sintering. Now, a nanoscale confinement strategy is developed to stabilize few-atom platinum clusters, preserving their nuclearity and catalytic activity under harsh reaction conditions.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 1\",\"pages\":\"32-33\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00173-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00173-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Nanoscale confinement strategy for the stabilization of few-atom platinum cluster catalysts
Supported noble metal catalysts are widely applied in hydrogenation catalysis but are limited by their high costs and susceptibility to sintering. Now, a nanoscale confinement strategy is developed to stabilize few-atom platinum clusters, preserving their nuclearity and catalytic activity under harsh reaction conditions.