Xiyue Liu, Yanpeng Cheng, Tiexin Sun, Yi Lu, Siqi Huan, Shouxin Liu, Wei Li, Zhiguo Li, Yang Liu, Orlando J Rojas, David Julian McClements, Long Bai
{"title":"用于 3D 打印食品的植物性可食用乳胶凝胶的最新进展。","authors":"Xiyue Liu, Yanpeng Cheng, Tiexin Sun, Yi Lu, Siqi Huan, Shouxin Liu, Wei Li, Zhiguo Li, Yang Liu, Orlando J Rojas, David Julian McClements, Long Bai","doi":"10.1146/annurev-food-111523-121736","DOIUrl":null,"url":null,"abstract":"<p><p>3D printing has emerged as a suitable technology for creating foodstuff with functional, sensorial, and nutritional attributes. There is growing interest in creating plant-based foods as alternatives to address current demands, especially to tailor consumer preferences. Consequently, plant-derived edible inks for additive manufacturing have emerged as suitable options, including emulsion gels (or emulgels). These gels can be formulated entirely from plant-derived lipids, proteins, polysaccharides, and/or other ingredients to form complex fluids that belong to the category of soft matter. This review summarizes the most recent advances in the areas of formation, structuring, properties, and applications of plant-based emulsion gels for 3D-printed food. These semisolid materials can be extruded to the set or solidified into structures with predesigned shapes, fidelity, and sensory attributes across the senses (taste, smell, sight, and touch) along with nutrition values. Emulsion gels can be formed by either solely gelling the continuous phase or combining this process with the formation of a particle network through aggregation and close packing. The current challenges facing the development of edible inks using plant-based materials are critically discussed to stimulate further advances in the rapidly growing field of personalized 3D-printed foods.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent Advances in Plant-Based Edible Emulsion Gels for 3D-Printed Foods.\",\"authors\":\"Xiyue Liu, Yanpeng Cheng, Tiexin Sun, Yi Lu, Siqi Huan, Shouxin Liu, Wei Li, Zhiguo Li, Yang Liu, Orlando J Rojas, David Julian McClements, Long Bai\",\"doi\":\"10.1146/annurev-food-111523-121736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>3D printing has emerged as a suitable technology for creating foodstuff with functional, sensorial, and nutritional attributes. There is growing interest in creating plant-based foods as alternatives to address current demands, especially to tailor consumer preferences. Consequently, plant-derived edible inks for additive manufacturing have emerged as suitable options, including emulsion gels (or emulgels). These gels can be formulated entirely from plant-derived lipids, proteins, polysaccharides, and/or other ingredients to form complex fluids that belong to the category of soft matter. This review summarizes the most recent advances in the areas of formation, structuring, properties, and applications of plant-based emulsion gels for 3D-printed food. These semisolid materials can be extruded to the set or solidified into structures with predesigned shapes, fidelity, and sensory attributes across the senses (taste, smell, sight, and touch) along with nutrition values. Emulsion gels can be formed by either solely gelling the continuous phase or combining this process with the formation of a particle network through aggregation and close packing. The current challenges facing the development of edible inks using plant-based materials are critically discussed to stimulate further advances in the rapidly growing field of personalized 3D-printed foods.</p>\",\"PeriodicalId\":8187,\"journal\":{\"name\":\"Annual review of food science and technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of food science and technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-food-111523-121736\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-111523-121736","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Recent Advances in Plant-Based Edible Emulsion Gels for 3D-Printed Foods.
3D printing has emerged as a suitable technology for creating foodstuff with functional, sensorial, and nutritional attributes. There is growing interest in creating plant-based foods as alternatives to address current demands, especially to tailor consumer preferences. Consequently, plant-derived edible inks for additive manufacturing have emerged as suitable options, including emulsion gels (or emulgels). These gels can be formulated entirely from plant-derived lipids, proteins, polysaccharides, and/or other ingredients to form complex fluids that belong to the category of soft matter. This review summarizes the most recent advances in the areas of formation, structuring, properties, and applications of plant-based emulsion gels for 3D-printed food. These semisolid materials can be extruded to the set or solidified into structures with predesigned shapes, fidelity, and sensory attributes across the senses (taste, smell, sight, and touch) along with nutrition values. Emulsion gels can be formed by either solely gelling the continuous phase or combining this process with the formation of a particle network through aggregation and close packing. The current challenges facing the development of edible inks using plant-based materials are critically discussed to stimulate further advances in the rapidly growing field of personalized 3D-printed foods.
期刊介绍:
Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.