{"title":"清道夫受体 B1 (SR-B1) 在改善食物对人体健康的益处方面的作用。","authors":"Giuseppe Valacchi, Alessandra Pecorelli","doi":"10.1146/annurev-food-111523-121935","DOIUrl":null,"url":null,"abstract":"<p><p>Scavenger receptor class B member 1 (SR-B1) is a multiligand receptor with a broad range of functions spanning from the uptake of cholesteryl esters from high-density lipoproteins (HDLs) and transport of micronutrients such as fat-soluble vitamins and carotenoids across cell membranes to roles in tumor progression, pathogen recognition, and inflammatory responses. As a target of exposome factors such as environmental stressors and unhealthy lifestyle choices, as well as aging, dysregulated expression and activity of SR-B1 can negatively impact human health. Intriguingly, not only is SR-B1 a major determinant of nutrient homeostasis and, hence, metabolic health status, but these same nutrients and some phytochemicals have also demonstrated their ability to modulate SR-B1. Therefore, an integrated approach that, taking into account human health, nutrition, and food technology sciences, aims to produce foods with health-promoting effects should take advantage of the multifaceted properties of SR-B1. Improved functional foods and novel nanoparticle-based delivery systems, rich in nutrients and phytochemicals, with precise targeting to SR-B1 in specific tissues or structures could represent a strategic advance to improve human health and promote well-being.</p>","PeriodicalId":8187,"journal":{"name":"Annual review of food science and technology","volume":" ","pages":""},"PeriodicalIF":10.6000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Role of Scavenger Receptor B1 (SR-B1) in Improving Food Benefits for Human Health.\",\"authors\":\"Giuseppe Valacchi, Alessandra Pecorelli\",\"doi\":\"10.1146/annurev-food-111523-121935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Scavenger receptor class B member 1 (SR-B1) is a multiligand receptor with a broad range of functions spanning from the uptake of cholesteryl esters from high-density lipoproteins (HDLs) and transport of micronutrients such as fat-soluble vitamins and carotenoids across cell membranes to roles in tumor progression, pathogen recognition, and inflammatory responses. As a target of exposome factors such as environmental stressors and unhealthy lifestyle choices, as well as aging, dysregulated expression and activity of SR-B1 can negatively impact human health. Intriguingly, not only is SR-B1 a major determinant of nutrient homeostasis and, hence, metabolic health status, but these same nutrients and some phytochemicals have also demonstrated their ability to modulate SR-B1. Therefore, an integrated approach that, taking into account human health, nutrition, and food technology sciences, aims to produce foods with health-promoting effects should take advantage of the multifaceted properties of SR-B1. Improved functional foods and novel nanoparticle-based delivery systems, rich in nutrients and phytochemicals, with precise targeting to SR-B1 in specific tissues or structures could represent a strategic advance to improve human health and promote well-being.</p>\",\"PeriodicalId\":8187,\"journal\":{\"name\":\"Annual review of food science and technology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.6000,\"publicationDate\":\"2025-02-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual review of food science and technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1146/annurev-food-111523-121935\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual review of food science and technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1146/annurev-food-111523-121935","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Role of Scavenger Receptor B1 (SR-B1) in Improving Food Benefits for Human Health.
Scavenger receptor class B member 1 (SR-B1) is a multiligand receptor with a broad range of functions spanning from the uptake of cholesteryl esters from high-density lipoproteins (HDLs) and transport of micronutrients such as fat-soluble vitamins and carotenoids across cell membranes to roles in tumor progression, pathogen recognition, and inflammatory responses. As a target of exposome factors such as environmental stressors and unhealthy lifestyle choices, as well as aging, dysregulated expression and activity of SR-B1 can negatively impact human health. Intriguingly, not only is SR-B1 a major determinant of nutrient homeostasis and, hence, metabolic health status, but these same nutrients and some phytochemicals have also demonstrated their ability to modulate SR-B1. Therefore, an integrated approach that, taking into account human health, nutrition, and food technology sciences, aims to produce foods with health-promoting effects should take advantage of the multifaceted properties of SR-B1. Improved functional foods and novel nanoparticle-based delivery systems, rich in nutrients and phytochemicals, with precise targeting to SR-B1 in specific tissues or structures could represent a strategic advance to improve human health and promote well-being.
期刊介绍:
Since 2010, the Annual Review of Food Science and Technology has been a key source for current developments in the multidisciplinary field. The covered topics span food microbiology, food-borne pathogens, and fermentation; food engineering, chemistry, biochemistry, rheology, and sensory properties; novel ingredients and nutrigenomics; emerging technologies in food processing and preservation; and applications of biotechnology and nanomaterials in food systems.