掺硫石墨烯修饰Li2FeSiO4@C纳米复合材料:一种新型锂储能正极材料

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL Solid State Ionics Pub Date : 2025-02-01 DOI:10.1016/j.ssi.2024.116780
Yanmei Zuo, Li Hua, Deqi Huang, Zhifang Zuo
{"title":"掺硫石墨烯修饰Li2FeSiO4@C纳米复合材料:一种新型锂储能正极材料","authors":"Yanmei Zuo,&nbsp;Li Hua,&nbsp;Deqi Huang,&nbsp;Zhifang Zuo","doi":"10.1016/j.ssi.2024.116780","DOIUrl":null,"url":null,"abstract":"<div><div>Li<sub>2</sub>FeSiO<sub>4</sub> has been regarded as a highly advanced cathode material for lithium energy storage because of its high theoretical capacity, good chemical stability and low cost. However, the low Li<sup>+</sup> diffusion coefficient and poor electrical conductivity of pure Li<sub>2</sub>FeSiO<sub>4</sub> result in bad rate capability and cyclic property. To address these problems, the designed sulfur-doped graphene-promoted Li<sub>2</sub>FeSiO<sub>4</sub>@C (abbreviated as SG-LFS@C) nanocomposite has been fabricated by a simple sol-gel technology and high-temperature solid-state reaction. Electrochemical tests demonstrate that the resulted SG-LFS@C displays superior lithium storage properties than Li<sub>2</sub>FeSiO<sub>4</sub>@C (abbreviated as LFS@C). The initial discharge capacities of SG-LFS@C were 260.7 and 139.1 mAh g<sup>−1</sup> at 0.1 and 10C, respectively. Even after 400 cycles at 20C, the specific capacity of SG-LFS@C can still reach 116.5 mAh g<sup>−1</sup> with the capacity retention rate of 94.9 %. The superior lithium storage performances for SG-LFS@C cathode are mainly attributed to the designed conductive nanostructures and the formed nanosized Li<sub>2</sub>FeSiO<sub>4</sub> particles. Thus, this novel concept provides a new direction for further research on other lithium-ion batteries cathode materials.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"420 ","pages":"Article 116780"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sulfur-doped graphene-decorated Li2FeSiO4@C nanocomposite: A novel cathode material for lithium energy storage\",\"authors\":\"Yanmei Zuo,&nbsp;Li Hua,&nbsp;Deqi Huang,&nbsp;Zhifang Zuo\",\"doi\":\"10.1016/j.ssi.2024.116780\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Li<sub>2</sub>FeSiO<sub>4</sub> has been regarded as a highly advanced cathode material for lithium energy storage because of its high theoretical capacity, good chemical stability and low cost. However, the low Li<sup>+</sup> diffusion coefficient and poor electrical conductivity of pure Li<sub>2</sub>FeSiO<sub>4</sub> result in bad rate capability and cyclic property. To address these problems, the designed sulfur-doped graphene-promoted Li<sub>2</sub>FeSiO<sub>4</sub>@C (abbreviated as SG-LFS@C) nanocomposite has been fabricated by a simple sol-gel technology and high-temperature solid-state reaction. Electrochemical tests demonstrate that the resulted SG-LFS@C displays superior lithium storage properties than Li<sub>2</sub>FeSiO<sub>4</sub>@C (abbreviated as LFS@C). The initial discharge capacities of SG-LFS@C were 260.7 and 139.1 mAh g<sup>−1</sup> at 0.1 and 10C, respectively. Even after 400 cycles at 20C, the specific capacity of SG-LFS@C can still reach 116.5 mAh g<sup>−1</sup> with the capacity retention rate of 94.9 %. The superior lithium storage performances for SG-LFS@C cathode are mainly attributed to the designed conductive nanostructures and the formed nanosized Li<sub>2</sub>FeSiO<sub>4</sub> particles. Thus, this novel concept provides a new direction for further research on other lithium-ion batteries cathode materials.</div></div>\",\"PeriodicalId\":431,\"journal\":{\"name\":\"Solid State Ionics\",\"volume\":\"420 \",\"pages\":\"Article 116780\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Solid State Ionics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016727382400328X\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016727382400328X","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

Li2FeSiO4具有理论容量高、化学稳定性好、成本低等优点,是一种非常先进的锂储能正极材料。然而,纯Li2FeSiO4的Li+扩散系数低,电导率差,导致其倍率能力和循环性能较差。为了解决这些问题,采用简单的溶胶-凝胶技术和高温固相反应制备了硫掺杂石墨烯促进Li2FeSiO4@C(简称SG-LFS@C)纳米复合材料。电化学测试表明,所得材料SG-LFS@C比Li2FeSiO4@C(简称LFS@C)具有更好的锂存储性能。在0.1℃和10C条件下,SG-LFS@C的初始放电容量分别为260.7 mAh和139.1 mAh g−1。在20℃下循环400次后,SG-LFS@C的比容量仍可达到116.5 mAh g−1,容量保持率为94.9%。SG-LFS@C阴极优异的锂存储性能主要归功于设计的导电纳米结构和形成的纳米级Li2FeSiO4颗粒。因此,这一新概念为其他锂离子电池正极材料的进一步研究提供了新的方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Sulfur-doped graphene-decorated Li2FeSiO4@C nanocomposite: A novel cathode material for lithium energy storage
Li2FeSiO4 has been regarded as a highly advanced cathode material for lithium energy storage because of its high theoretical capacity, good chemical stability and low cost. However, the low Li+ diffusion coefficient and poor electrical conductivity of pure Li2FeSiO4 result in bad rate capability and cyclic property. To address these problems, the designed sulfur-doped graphene-promoted Li2FeSiO4@C (abbreviated as SG-LFS@C) nanocomposite has been fabricated by a simple sol-gel technology and high-temperature solid-state reaction. Electrochemical tests demonstrate that the resulted SG-LFS@C displays superior lithium storage properties than Li2FeSiO4@C (abbreviated as LFS@C). The initial discharge capacities of SG-LFS@C were 260.7 and 139.1 mAh g−1 at 0.1 and 10C, respectively. Even after 400 cycles at 20C, the specific capacity of SG-LFS@C can still reach 116.5 mAh g−1 with the capacity retention rate of 94.9 %. The superior lithium storage performances for SG-LFS@C cathode are mainly attributed to the designed conductive nanostructures and the formed nanosized Li2FeSiO4 particles. Thus, this novel concept provides a new direction for further research on other lithium-ion batteries cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
期刊最新文献
P2-type Na0.6Mg0.2Cu0.1Mn0.7O2 cathode materials with enhanced cyclic stability for high-energy Na-ion batteries Influence of defect interactions on the electrical conductivity of gadolinium-doped ceria Enhanced ionic conductivity and dielectric performance of CaB₂O₄-doped 2-hydroxyethyl cellulose polymer electrolytes for electrical double layer capacitor applications One – Step synthesis of glass ceramic Li6PS5Cl1-xIx solid electrolytes for all-solid-state batteries Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1