口咽鳞癌 HPV 状态的临床特征预测分析:一种具有可解释性的机器学习方法

Emily Diaz Badilla , Ignasi Cos , Claudio Sampieri , Berta Alegre , Isabel Vilaseca , Simone Balocco , Petia Radeva
{"title":"口咽鳞癌 HPV 状态的临床特征预测分析:一种具有可解释性的机器学习方法","authors":"Emily Diaz Badilla ,&nbsp;Ignasi Cos ,&nbsp;Claudio Sampieri ,&nbsp;Berta Alegre ,&nbsp;Isabel Vilaseca ,&nbsp;Simone Balocco ,&nbsp;Petia Radeva","doi":"10.1016/j.cmpbup.2024.100170","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and Objective:</h3><div>Oropharynx Squamous Cell Carcinoma (OPSCC) linked to Human Papillomavirus (HPV) exhibits a more favorable prognosis than other squamous cell carcinomas of the upper aerodigestive tract. Finding reliable non-invasive detection methods of this prognostic entity is key to propose appropriate therapeutic decisions. This study aims to provide a comprehensive method based on pre-treatment clinical data for predicting the patient’s HPV status over a large OPSCC patient cohort and employing explainability techniques to interpret the significance and effects of the features.</div></div><div><h3>Materials and Methods:</h3><div>We employed the RADCURE dataset clinical information to train six Machine Learning algorithms, evaluating them via cross-validation for grid search hyper-parameter tuning and feature selection as well as a final performance measurement on a 20% sample test set. For explainability, SHAP and LIME were used to identify the most relevant relationships and their effect on the predictive model. Furthermore, additional publicly available datasets were scrutinized to compare outcomes and assess the method’s generalization across diverse feature sets and populations.</div></div><div><h3>Results:</h3><div>The best model yielded an AUC of 0.85, a sensitivity of 0.83, and a specificity of 0.75 over the testing set. The explainability analysis highlighted the remarkable significance of specific clinical attributes, in particular the oropharynx subsite tumor location and the patient’s smoking history. The contribution of each variable to the prediction was substantiated by creating a 95% confidence intervals of model coefficients by means of a 10,000 sample bootstrap and by analyzing top contributors across the best-performing models.</div></div><div><h3>Conclusions:</h3><div>The combination of specific clinical factors typically collected for OPSCC patients, such as smoking habits and the tumor oropharynx sub-location, along with the ML models hereby presented, can by themselves provide an informed analysis of the HPV status, and of proper use of data science techniques to explain it. Future work should focus on adding other data modalities such as CT scans to enhance performance and to uncover new relations, thus aiding medical practitioners in diagnosing OPSCC more accurately.</div></div>","PeriodicalId":72670,"journal":{"name":"Computer methods and programs in biomedicine update","volume":"7 ","pages":"Article 100170"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Predictive analysis of clinical features for HPV status in oropharynx squamous cell carcinoma: A machine learning approach with explainability\",\"authors\":\"Emily Diaz Badilla ,&nbsp;Ignasi Cos ,&nbsp;Claudio Sampieri ,&nbsp;Berta Alegre ,&nbsp;Isabel Vilaseca ,&nbsp;Simone Balocco ,&nbsp;Petia Radeva\",\"doi\":\"10.1016/j.cmpbup.2024.100170\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background and Objective:</h3><div>Oropharynx Squamous Cell Carcinoma (OPSCC) linked to Human Papillomavirus (HPV) exhibits a more favorable prognosis than other squamous cell carcinomas of the upper aerodigestive tract. Finding reliable non-invasive detection methods of this prognostic entity is key to propose appropriate therapeutic decisions. This study aims to provide a comprehensive method based on pre-treatment clinical data for predicting the patient’s HPV status over a large OPSCC patient cohort and employing explainability techniques to interpret the significance and effects of the features.</div></div><div><h3>Materials and Methods:</h3><div>We employed the RADCURE dataset clinical information to train six Machine Learning algorithms, evaluating them via cross-validation for grid search hyper-parameter tuning and feature selection as well as a final performance measurement on a 20% sample test set. For explainability, SHAP and LIME were used to identify the most relevant relationships and their effect on the predictive model. Furthermore, additional publicly available datasets were scrutinized to compare outcomes and assess the method’s generalization across diverse feature sets and populations.</div></div><div><h3>Results:</h3><div>The best model yielded an AUC of 0.85, a sensitivity of 0.83, and a specificity of 0.75 over the testing set. The explainability analysis highlighted the remarkable significance of specific clinical attributes, in particular the oropharynx subsite tumor location and the patient’s smoking history. The contribution of each variable to the prediction was substantiated by creating a 95% confidence intervals of model coefficients by means of a 10,000 sample bootstrap and by analyzing top contributors across the best-performing models.</div></div><div><h3>Conclusions:</h3><div>The combination of specific clinical factors typically collected for OPSCC patients, such as smoking habits and the tumor oropharynx sub-location, along with the ML models hereby presented, can by themselves provide an informed analysis of the HPV status, and of proper use of data science techniques to explain it. Future work should focus on adding other data modalities such as CT scans to enhance performance and to uncover new relations, thus aiding medical practitioners in diagnosing OPSCC more accurately.</div></div>\",\"PeriodicalId\":72670,\"journal\":{\"name\":\"Computer methods and programs in biomedicine update\",\"volume\":\"7 \",\"pages\":\"Article 100170\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer methods and programs in biomedicine update\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666990024000375\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer methods and programs in biomedicine update","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666990024000375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Predictive analysis of clinical features for HPV status in oropharynx squamous cell carcinoma: A machine learning approach with explainability

Background and Objective:

Oropharynx Squamous Cell Carcinoma (OPSCC) linked to Human Papillomavirus (HPV) exhibits a more favorable prognosis than other squamous cell carcinomas of the upper aerodigestive tract. Finding reliable non-invasive detection methods of this prognostic entity is key to propose appropriate therapeutic decisions. This study aims to provide a comprehensive method based on pre-treatment clinical data for predicting the patient’s HPV status over a large OPSCC patient cohort and employing explainability techniques to interpret the significance and effects of the features.

Materials and Methods:

We employed the RADCURE dataset clinical information to train six Machine Learning algorithms, evaluating them via cross-validation for grid search hyper-parameter tuning and feature selection as well as a final performance measurement on a 20% sample test set. For explainability, SHAP and LIME were used to identify the most relevant relationships and their effect on the predictive model. Furthermore, additional publicly available datasets were scrutinized to compare outcomes and assess the method’s generalization across diverse feature sets and populations.

Results:

The best model yielded an AUC of 0.85, a sensitivity of 0.83, and a specificity of 0.75 over the testing set. The explainability analysis highlighted the remarkable significance of specific clinical attributes, in particular the oropharynx subsite tumor location and the patient’s smoking history. The contribution of each variable to the prediction was substantiated by creating a 95% confidence intervals of model coefficients by means of a 10,000 sample bootstrap and by analyzing top contributors across the best-performing models.

Conclusions:

The combination of specific clinical factors typically collected for OPSCC patients, such as smoking habits and the tumor oropharynx sub-location, along with the ML models hereby presented, can by themselves provide an informed analysis of the HPV status, and of proper use of data science techniques to explain it. Future work should focus on adding other data modalities such as CT scans to enhance performance and to uncover new relations, thus aiding medical practitioners in diagnosing OPSCC more accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.90
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
A comparative approach of analyzing data uncertainty in parameter estimation for a Lumpy Skin Disease model Feature selection based on Mahalanobis distance for early Parkinson disease classification Multiscale guided attention network for optic disc segmentation of retinal images A sustainable neuromorphic framework for disease diagnosis using digital medical imaging A computer-based method for the automatic identification of the dimensional features of human cervical vertebrae
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1