半荒漠潮间带湿地微生物浮游生物的季节模式与气候和水文条件的周期性

IF 2.7 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Marine Systems Pub Date : 2025-01-01 DOI:10.1016/j.jmarsys.2024.104023
Juan F. Saad , Giuliana M. Burgueño , Gabriela N. Williams , Marianela Gastaldi , Patricio J. Pereyra , Raúl A. Gonzalez , Maite A. Narvarte , Viviana A. Alder
{"title":"半荒漠潮间带湿地微生物浮游生物的季节模式与气候和水文条件的周期性","authors":"Juan F. Saad ,&nbsp;Giuliana M. Burgueño ,&nbsp;Gabriela N. Williams ,&nbsp;Marianela Gastaldi ,&nbsp;Patricio J. Pereyra ,&nbsp;Raúl A. Gonzalez ,&nbsp;Maite A. Narvarte ,&nbsp;Viviana A. Alder","doi":"10.1016/j.jmarsys.2024.104023","DOIUrl":null,"url":null,"abstract":"<div><div>Macrotidal wetlands of temperate areas are highly productive systems where interactions between land and water are particularly dynamic. Typically, these systems display temporal shifts in their water properties not only because of annual fluctuations in the photoperiod and air temperature but also due to strong tidal regimes and climatic events. In contrast with the well-studied microtidal systems, the temporal fluctuations in structure and biomass of microbial communities of semi-desert, enclosed temperate macrotidal wetlands are scarcely known, and thus the coupling between primary producers and the bacterial community occurring within them remains poorly understood. In this study we analyze the fluctuations of unicellular plankton and hydrographic conditions on a fixed station located in San Antonio Bay (SAB, Northern Argentine Patagonia) from spring 2016 to early summer 2018 with the aim of detecting possible associations with the periodicity of some climatological variables and local meteorological events. Density and biomass of microbial size fractions (pico-, nano- and microplankton) along with their nutrition modes (autotrophic, potentially mixotrophic and heterotrophic) were assessed based on bi-weekly samplings. In addition, the study also examines the relationships of autotrophs and bacterioplankton with the frequency, duration, and magnitude of phytoplanktonic blooms, as well as the biomass contribution of dominant diatom species. We found a microbial-dominated planktonic system with increased densities of both autotrophic and heterotrophic picoplankton and flagellated protists. The biomass of potentially mixotrophs dominated over that of autotrophs and heterotrophs along the entire period. Autotrophic biomass showed a single annual maximum in summer, while chlorophyll-<em>a</em> displayed a biannual cycle. Neither chlorophyll-<em>a</em> nor autotrophic biomass reached high values as compared to other coastal systems with no clear dominant phytoplanktonic taxa. The annual phytoplanktonic biomass cycle in SAB appears not to be related to those of other coastal environments from North Patagonia. We infer that the strong macrotidal dynamics limits primary production and turns this system into a high nutrient/low chlorophyll one that exports surplus nutrients in tide-driven pulses to neighboring areas.</div></div>","PeriodicalId":50150,"journal":{"name":"Journal of Marine Systems","volume":"247 ","pages":"Article 104023"},"PeriodicalIF":2.7000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Seasonal patterns of microbial plankton and periodicity of climatic and hydrographic conditions in a semi-desert macrotidal wetland\",\"authors\":\"Juan F. Saad ,&nbsp;Giuliana M. Burgueño ,&nbsp;Gabriela N. Williams ,&nbsp;Marianela Gastaldi ,&nbsp;Patricio J. Pereyra ,&nbsp;Raúl A. Gonzalez ,&nbsp;Maite A. Narvarte ,&nbsp;Viviana A. Alder\",\"doi\":\"10.1016/j.jmarsys.2024.104023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Macrotidal wetlands of temperate areas are highly productive systems where interactions between land and water are particularly dynamic. Typically, these systems display temporal shifts in their water properties not only because of annual fluctuations in the photoperiod and air temperature but also due to strong tidal regimes and climatic events. In contrast with the well-studied microtidal systems, the temporal fluctuations in structure and biomass of microbial communities of semi-desert, enclosed temperate macrotidal wetlands are scarcely known, and thus the coupling between primary producers and the bacterial community occurring within them remains poorly understood. In this study we analyze the fluctuations of unicellular plankton and hydrographic conditions on a fixed station located in San Antonio Bay (SAB, Northern Argentine Patagonia) from spring 2016 to early summer 2018 with the aim of detecting possible associations with the periodicity of some climatological variables and local meteorological events. Density and biomass of microbial size fractions (pico-, nano- and microplankton) along with their nutrition modes (autotrophic, potentially mixotrophic and heterotrophic) were assessed based on bi-weekly samplings. In addition, the study also examines the relationships of autotrophs and bacterioplankton with the frequency, duration, and magnitude of phytoplanktonic blooms, as well as the biomass contribution of dominant diatom species. We found a microbial-dominated planktonic system with increased densities of both autotrophic and heterotrophic picoplankton and flagellated protists. The biomass of potentially mixotrophs dominated over that of autotrophs and heterotrophs along the entire period. Autotrophic biomass showed a single annual maximum in summer, while chlorophyll-<em>a</em> displayed a biannual cycle. Neither chlorophyll-<em>a</em> nor autotrophic biomass reached high values as compared to other coastal systems with no clear dominant phytoplanktonic taxa. The annual phytoplanktonic biomass cycle in SAB appears not to be related to those of other coastal environments from North Patagonia. We infer that the strong macrotidal dynamics limits primary production and turns this system into a high nutrient/low chlorophyll one that exports surplus nutrients in tide-driven pulses to neighboring areas.</div></div>\",\"PeriodicalId\":50150,\"journal\":{\"name\":\"Journal of Marine Systems\",\"volume\":\"247 \",\"pages\":\"Article 104023\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Marine Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924796324000617\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Marine Systems","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924796324000617","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Seasonal patterns of microbial plankton and periodicity of climatic and hydrographic conditions in a semi-desert macrotidal wetland
Macrotidal wetlands of temperate areas are highly productive systems where interactions between land and water are particularly dynamic. Typically, these systems display temporal shifts in their water properties not only because of annual fluctuations in the photoperiod and air temperature but also due to strong tidal regimes and climatic events. In contrast with the well-studied microtidal systems, the temporal fluctuations in structure and biomass of microbial communities of semi-desert, enclosed temperate macrotidal wetlands are scarcely known, and thus the coupling between primary producers and the bacterial community occurring within them remains poorly understood. In this study we analyze the fluctuations of unicellular plankton and hydrographic conditions on a fixed station located in San Antonio Bay (SAB, Northern Argentine Patagonia) from spring 2016 to early summer 2018 with the aim of detecting possible associations with the periodicity of some climatological variables and local meteorological events. Density and biomass of microbial size fractions (pico-, nano- and microplankton) along with their nutrition modes (autotrophic, potentially mixotrophic and heterotrophic) were assessed based on bi-weekly samplings. In addition, the study also examines the relationships of autotrophs and bacterioplankton with the frequency, duration, and magnitude of phytoplanktonic blooms, as well as the biomass contribution of dominant diatom species. We found a microbial-dominated planktonic system with increased densities of both autotrophic and heterotrophic picoplankton and flagellated protists. The biomass of potentially mixotrophs dominated over that of autotrophs and heterotrophs along the entire period. Autotrophic biomass showed a single annual maximum in summer, while chlorophyll-a displayed a biannual cycle. Neither chlorophyll-a nor autotrophic biomass reached high values as compared to other coastal systems with no clear dominant phytoplanktonic taxa. The annual phytoplanktonic biomass cycle in SAB appears not to be related to those of other coastal environments from North Patagonia. We infer that the strong macrotidal dynamics limits primary production and turns this system into a high nutrient/low chlorophyll one that exports surplus nutrients in tide-driven pulses to neighboring areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Marine Systems
Journal of Marine Systems 地学-地球科学综合
CiteScore
6.20
自引率
3.60%
发文量
81
审稿时长
6 months
期刊介绍: The Journal of Marine Systems provides a medium for interdisciplinary exchange between physical, chemical and biological oceanographers and marine geologists. The journal welcomes original research papers and review articles. Preference will be given to interdisciplinary approaches to marine systems.
期刊最新文献
30 years of sea surface temperature and salinity observations crossing the Southern Ocean near 140°E: Trends and rollercoaster variability Trend analysis of time series variations in the marine environments and size-fractionated chlorophyll a in the coastal areas of eastern Hokkaido, southwestern Okhotsk Sea Climate-driven warming, deoxygenation, and desertification in large marine ecosystems Global surface ocean calcite saturation (Ωcal) estimation using satellite and in-situ observations Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1