IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL Journal of Environmental Chemical Engineering Pub Date : 2025-02-01 DOI:10.1016/j.jece.2024.114909
Wafa Suwaileh , Salahuddin Attar , Fatima Abu-Rub , Abdellatif El-Ghenym , Khaled ElSaid , Ahmed Badreldin , Mohammed Al-Hashimi , Ahmed Abdel-Wahab , Ahmed Abdala
{"title":"Thin-film composite forward osmosis membrane with superior alkaline stability","authors":"Wafa Suwaileh ,&nbsp;Salahuddin Attar ,&nbsp;Fatima Abu-Rub ,&nbsp;Abdellatif El-Ghenym ,&nbsp;Khaled ElSaid ,&nbsp;Ahmed Badreldin ,&nbsp;Mohammed Al-Hashimi ,&nbsp;Ahmed Abdel-Wahab ,&nbsp;Ahmed Abdala","doi":"10.1016/j.jece.2024.114909","DOIUrl":null,"url":null,"abstract":"<div><div>The polyamide selective controls water permeation and selectivity in thin-film composite (TFC) membranes. In this study, we fabricated TFC forward osmosis (FO) membranes supported on ultrafiltration (UF) polyethersulfone (PES) through interfacial polymerization (IP) of 2,6-diaminopyridine (DAP) and trimesoyl chloride (TMC). IR spectroscopic and XPS analysis confirmed the successful formation of the DAP-polyamide selective layer on the PES substrate. The DAP-TFC membrane’s surface exhibited higher hydrophilicity, less roughness, and higher crosslinking density than conventional TFC membrane (MPD-TFC) prepared via IP of meta-phenylene diamine (MPD) and TMC. The robust DAP-TFC membrane exhibited higher water flux (6.7 LMH) and lower specific solute flux (SSF) of K+ (2.2 g/L) in FO testing using 0.6 M NaCl feed solution and 3.0 M KOH draw solution. Additionally, lower forward solute flux for Na<sup>+</sup> (5.8 gMH) and Cl<sup>-</sup> (9.5 gMH) and SSFs Na<sup>+</sup> (0.9 g/L) and Cl<sup>-</sup> (1.4 g/L) were achieved. Most importantly, the DAP-TFC membrane demonstrated excellent stability under extreme pH conditions, maintaining integrity for 60 h under FO mode with 0.6 M NaCl feed solution and 3 M KOH draw solution, in contrast to conventional MPD-TFC, which disintegrated after 5 h. The enhanced DAP-TFC membrane stability is attributed to formation of iminol tautomer, stabilizing H-bonding, facilitating reversible cation capture, and preventing hydrolysis, thereby improving chemical resistance and ion rejection. The alteration of the PA selective layer using DAP offers efficient approach for fabricating FO membranes with superior alkaline stability, holding great potential for industrial applications requiring high pH stability, particularly in challenging environments and demanding applications.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 1","pages":"Article 114909"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724030410","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚酰胺的选择性控制着薄膜复合(TFC)膜的透水性和选择性。在这项研究中,我们通过 2,6-二氨基吡啶(DAP)和三甲基甲酰氯(TMC)的界面聚合(IP),在超滤(UF)聚醚砜(PES)上制备了支持正渗透(FO)的 TFC 膜。红外光谱和 XPS 分析证实,在 PES 基底上成功形成了 DAP 聚酰胺选择层。与通过偏苯二胺(MPD)和 TMC 的 IP 制备的传统 TFC 膜(MPD-TFC)相比,DAP-TFC 膜的表面亲水性更高、粗糙度更小、交联密度更大。在使用 0.6 M NaCl 给水溶液和 3.0 M KOH 拉水溶液的 FO 测试中,坚固的 DAP-TFC 膜表现出更高的水通量(6.7 LMH)和更低的 K+ 特定溶质通量(SSF)(2.2 g/L)。此外,Na+(5.8 gMH)和 Cl-(9.5 gMH)的前向溶质通量以及 Na+(0.9 g/L)和 Cl-(1.4 g/L)的 SSF 均有所降低。最重要的是,DAP-TFC 膜在极端 pH 条件下表现出卓越的稳定性,在 0.6 M NaCl 进料溶液和 3 M KOH 抽取溶液的 FO 模式下,可在 60 小时内保持完整性,而传统的 MPD-TFC 膜则在 5 小时后瓦解。DAP-TFC 膜稳定性的增强归因于亚氨基醇同系物的形成、H 键的稳定、阳离子捕获的可逆性和水解的防止,从而提高了耐化学性和离子排斥性。使用 DAP 改变 PA 选择层为制造具有出色碱性稳定性的 FO 膜提供了有效方法,为需要高 pH 稳定性的工业应用提供了巨大潜力,特别是在具有挑战性的环境和要求苛刻的应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thin-film composite forward osmosis membrane with superior alkaline stability
The polyamide selective controls water permeation and selectivity in thin-film composite (TFC) membranes. In this study, we fabricated TFC forward osmosis (FO) membranes supported on ultrafiltration (UF) polyethersulfone (PES) through interfacial polymerization (IP) of 2,6-diaminopyridine (DAP) and trimesoyl chloride (TMC). IR spectroscopic and XPS analysis confirmed the successful formation of the DAP-polyamide selective layer on the PES substrate. The DAP-TFC membrane’s surface exhibited higher hydrophilicity, less roughness, and higher crosslinking density than conventional TFC membrane (MPD-TFC) prepared via IP of meta-phenylene diamine (MPD) and TMC. The robust DAP-TFC membrane exhibited higher water flux (6.7 LMH) and lower specific solute flux (SSF) of K+ (2.2 g/L) in FO testing using 0.6 M NaCl feed solution and 3.0 M KOH draw solution. Additionally, lower forward solute flux for Na+ (5.8 gMH) and Cl- (9.5 gMH) and SSFs Na+ (0.9 g/L) and Cl- (1.4 g/L) were achieved. Most importantly, the DAP-TFC membrane demonstrated excellent stability under extreme pH conditions, maintaining integrity for 60 h under FO mode with 0.6 M NaCl feed solution and 3 M KOH draw solution, in contrast to conventional MPD-TFC, which disintegrated after 5 h. The enhanced DAP-TFC membrane stability is attributed to formation of iminol tautomer, stabilizing H-bonding, facilitating reversible cation capture, and preventing hydrolysis, thereby improving chemical resistance and ion rejection. The alteration of the PA selective layer using DAP offers efficient approach for fabricating FO membranes with superior alkaline stability, holding great potential for industrial applications requiring high pH stability, particularly in challenging environments and demanding applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
期刊最新文献
The three-dimensional electrocatalytic oxidation system for refractory organic wastewater remediations: Mechanisms, electrode material and applications A state-of-the-art review focusing on the fabrication technique of activated chitosan-bitumin coal based multifunctional bionanocomposites for industrial wastewater treatment: Production, characterization, and fixed bed column adsorption study Use of fluorescence for real-time monitoring of contaminants of emerging concern in (waste)water: Perspectives for sensors implementation and process control Bioaugmentation-assisted phytoremediation of petroleum hydrocarbon-contaminated soils Application of microfluidics for revealing physiological metabolic response of algae at the single-cell level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1