Amaal Abdulraqeb Ali , Amani Al-Othman , Muhammad Tawalbeh , Aamer Ali , Cejna A. Quist-Jensen , Mohammad Mahdi A. Shirazi
{"title":"促进可持续发展目标的膜技术:对光明前景的批判性审查","authors":"Amaal Abdulraqeb Ali , Amani Al-Othman , Muhammad Tawalbeh , Aamer Ali , Cejna A. Quist-Jensen , Mohammad Mahdi A. Shirazi","doi":"10.1016/j.jece.2024.114998","DOIUrl":null,"url":null,"abstract":"<div><div>With the emergence of global challenges, sustainability has become a pivotal element in the world’s development agendas. To achieve global development, 17 sustainability development goals (SDGs) were developed by the United Nations in 2012. Recently, membrane technologies have been rising to the spotlight as a promising green alternative for the accomplishment of these SDGs. This is due to their numerous advantages, including high selectivity, lower cost, relatively easy upscaling, mild processing conditions, compact system with minimized steel usage, and reduced energy consumption. Despite its growing importance in sustainable development, membrane technologies have not been reviewed and rigorously analyzed for all SDGs. This review critically analyzes membrane technologies' significant position in SDGs to fill this gap in the literature. More precisely, this review uniquely delves into the versatile role of membrane technologies in contributing to the SDGs with state-of-the-art examples, hence, aiding in solving pressing global challenges such as clean water, affordable and clean energy, climate action, poverty, life below water, etc. Furthermore, by evaluating the economic and social dimensions of membrane technologies in sustainable development, this review comprehensively highlights the holistic advantages offered by various membrane processes in the accomplishment of SDGs. This paper concludes by discussing future directions that could be implemented to harness the full potential of membrane technologies in SDGs accomplishment.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"13 1","pages":"Article 114998"},"PeriodicalIF":7.4000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Membrane technologies for sustainable development goals: A critical review of bright horizons\",\"authors\":\"Amaal Abdulraqeb Ali , Amani Al-Othman , Muhammad Tawalbeh , Aamer Ali , Cejna A. Quist-Jensen , Mohammad Mahdi A. Shirazi\",\"doi\":\"10.1016/j.jece.2024.114998\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the emergence of global challenges, sustainability has become a pivotal element in the world’s development agendas. To achieve global development, 17 sustainability development goals (SDGs) were developed by the United Nations in 2012. Recently, membrane technologies have been rising to the spotlight as a promising green alternative for the accomplishment of these SDGs. This is due to their numerous advantages, including high selectivity, lower cost, relatively easy upscaling, mild processing conditions, compact system with minimized steel usage, and reduced energy consumption. Despite its growing importance in sustainable development, membrane technologies have not been reviewed and rigorously analyzed for all SDGs. This review critically analyzes membrane technologies' significant position in SDGs to fill this gap in the literature. More precisely, this review uniquely delves into the versatile role of membrane technologies in contributing to the SDGs with state-of-the-art examples, hence, aiding in solving pressing global challenges such as clean water, affordable and clean energy, climate action, poverty, life below water, etc. Furthermore, by evaluating the economic and social dimensions of membrane technologies in sustainable development, this review comprehensively highlights the holistic advantages offered by various membrane processes in the accomplishment of SDGs. This paper concludes by discussing future directions that could be implemented to harness the full potential of membrane technologies in SDGs accomplishment.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"13 1\",\"pages\":\"Article 114998\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724031300\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724031300","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Membrane technologies for sustainable development goals: A critical review of bright horizons
With the emergence of global challenges, sustainability has become a pivotal element in the world’s development agendas. To achieve global development, 17 sustainability development goals (SDGs) were developed by the United Nations in 2012. Recently, membrane technologies have been rising to the spotlight as a promising green alternative for the accomplishment of these SDGs. This is due to their numerous advantages, including high selectivity, lower cost, relatively easy upscaling, mild processing conditions, compact system with minimized steel usage, and reduced energy consumption. Despite its growing importance in sustainable development, membrane technologies have not been reviewed and rigorously analyzed for all SDGs. This review critically analyzes membrane technologies' significant position in SDGs to fill this gap in the literature. More precisely, this review uniquely delves into the versatile role of membrane technologies in contributing to the SDGs with state-of-the-art examples, hence, aiding in solving pressing global challenges such as clean water, affordable and clean energy, climate action, poverty, life below water, etc. Furthermore, by evaluating the economic and social dimensions of membrane technologies in sustainable development, this review comprehensively highlights the holistic advantages offered by various membrane processes in the accomplishment of SDGs. This paper concludes by discussing future directions that could be implemented to harness the full potential of membrane technologies in SDGs accomplishment.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.