利用高阶剪切变形理论研究具有非均匀分布孔隙率的剪切变形多孔正交层叠双曲浅壳的固有频率

IF 5.7 1区 工程技术 Q1 ENGINEERING, CIVIL Thin-Walled Structures Pub Date : 2025-01-27 DOI:10.1016/j.tws.2025.112951
Ferruh Turan , Ertugrul Zeren , Muhammed Karadeniz , Vu Ngoc Viet Hoang
{"title":"利用高阶剪切变形理论研究具有非均匀分布孔隙率的剪切变形多孔正交层叠双曲浅壳的固有频率","authors":"Ferruh Turan ,&nbsp;Ertugrul Zeren ,&nbsp;Muhammed Karadeniz ,&nbsp;Vu Ngoc Viet Hoang","doi":"10.1016/j.tws.2025.112951","DOIUrl":null,"url":null,"abstract":"<div><div>Porous materials, characterized by a network of voids, offer unique functional properties such as reduced density, high stiffness-to-weight and strength-to-weight ratios, and resistance to mechanical and thermal shocks. Despite their advantages, there is a lack of study on the free vibration behavior of porous laminated doubly-curved shallow shells. This study investigates the natural frequencies of porous orthotropic laminated doubly-curved shallow shells with different porosity distribution patterns. Porosity-dependent material properties are graded in the thickness direction using special cosine and sine functions. The equations of motion are established using Hamilton’s principle based on the higher-order shear deformation theory and solved by Galerkin’s method and an auxiliary function of simply supported boundary conditions to achieve natural frequency formulation. The formulation is confirmed by comparing the results with those in the existing literature, and an excellent agreement is observed. A parametric study is employed to analyze the effect of porosity coefficients, porosity distribution patterns, orthotropy, lamination sequences and orientations, shallow shell types, and geometrical characteristics on the natural frequencies of porous orthotropic laminated doubly-curved shallow shells. The results reveal that porosity distribution significantly influences dynamic behavior. Uniform porosity distribution (UDP) exhibits consistent effects across parameters, while non-uniform distributions (NUDP1, NUDP2, NUDP3) induce complex, often wavy variation, particularly in hyperbolic paraboloidal shells (HPS). Spherical shells (SS) consistently show higher natural fundamental frequencies (N-FNFs) compared to HPS, with this difference becoming more pronounced with increasing aspect ratios and diminishing orthotropy ratios. Unexpectedly, single-layered configurations in HPS sometimes exhibit higher N-FNFs than multi-layered ones, a contrast to the behavior observed in SS. Orientation angles also play a critical role, with certain ranges leading to wavy variations in N-FNFs, particularly under non-uniform porosity distributions. These findings highlight the intricate interplay between porosity, lamination, geometry, and orthotropy, offering valuable insights for optimizing porous material design in advanced engineering structures.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":"210 ","pages":"Article 112951"},"PeriodicalIF":5.7000,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural frequencies of shear deformable porous orthotropic laminated doubly-curved shallow shells with non-uniformly distributed porosity using higher-order shear deformation theory\",\"authors\":\"Ferruh Turan ,&nbsp;Ertugrul Zeren ,&nbsp;Muhammed Karadeniz ,&nbsp;Vu Ngoc Viet Hoang\",\"doi\":\"10.1016/j.tws.2025.112951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Porous materials, characterized by a network of voids, offer unique functional properties such as reduced density, high stiffness-to-weight and strength-to-weight ratios, and resistance to mechanical and thermal shocks. Despite their advantages, there is a lack of study on the free vibration behavior of porous laminated doubly-curved shallow shells. This study investigates the natural frequencies of porous orthotropic laminated doubly-curved shallow shells with different porosity distribution patterns. Porosity-dependent material properties are graded in the thickness direction using special cosine and sine functions. The equations of motion are established using Hamilton’s principle based on the higher-order shear deformation theory and solved by Galerkin’s method and an auxiliary function of simply supported boundary conditions to achieve natural frequency formulation. The formulation is confirmed by comparing the results with those in the existing literature, and an excellent agreement is observed. A parametric study is employed to analyze the effect of porosity coefficients, porosity distribution patterns, orthotropy, lamination sequences and orientations, shallow shell types, and geometrical characteristics on the natural frequencies of porous orthotropic laminated doubly-curved shallow shells. The results reveal that porosity distribution significantly influences dynamic behavior. Uniform porosity distribution (UDP) exhibits consistent effects across parameters, while non-uniform distributions (NUDP1, NUDP2, NUDP3) induce complex, often wavy variation, particularly in hyperbolic paraboloidal shells (HPS). Spherical shells (SS) consistently show higher natural fundamental frequencies (N-FNFs) compared to HPS, with this difference becoming more pronounced with increasing aspect ratios and diminishing orthotropy ratios. Unexpectedly, single-layered configurations in HPS sometimes exhibit higher N-FNFs than multi-layered ones, a contrast to the behavior observed in SS. Orientation angles also play a critical role, with certain ranges leading to wavy variations in N-FNFs, particularly under non-uniform porosity distributions. These findings highlight the intricate interplay between porosity, lamination, geometry, and orthotropy, offering valuable insights for optimizing porous material design in advanced engineering structures.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":\"210 \",\"pages\":\"Article 112951\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2025-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S026382312500045X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382312500045X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Natural frequencies of shear deformable porous orthotropic laminated doubly-curved shallow shells with non-uniformly distributed porosity using higher-order shear deformation theory
Porous materials, characterized by a network of voids, offer unique functional properties such as reduced density, high stiffness-to-weight and strength-to-weight ratios, and resistance to mechanical and thermal shocks. Despite their advantages, there is a lack of study on the free vibration behavior of porous laminated doubly-curved shallow shells. This study investigates the natural frequencies of porous orthotropic laminated doubly-curved shallow shells with different porosity distribution patterns. Porosity-dependent material properties are graded in the thickness direction using special cosine and sine functions. The equations of motion are established using Hamilton’s principle based on the higher-order shear deformation theory and solved by Galerkin’s method and an auxiliary function of simply supported boundary conditions to achieve natural frequency formulation. The formulation is confirmed by comparing the results with those in the existing literature, and an excellent agreement is observed. A parametric study is employed to analyze the effect of porosity coefficients, porosity distribution patterns, orthotropy, lamination sequences and orientations, shallow shell types, and geometrical characteristics on the natural frequencies of porous orthotropic laminated doubly-curved shallow shells. The results reveal that porosity distribution significantly influences dynamic behavior. Uniform porosity distribution (UDP) exhibits consistent effects across parameters, while non-uniform distributions (NUDP1, NUDP2, NUDP3) induce complex, often wavy variation, particularly in hyperbolic paraboloidal shells (HPS). Spherical shells (SS) consistently show higher natural fundamental frequencies (N-FNFs) compared to HPS, with this difference becoming more pronounced with increasing aspect ratios and diminishing orthotropy ratios. Unexpectedly, single-layered configurations in HPS sometimes exhibit higher N-FNFs than multi-layered ones, a contrast to the behavior observed in SS. Orientation angles also play a critical role, with certain ranges leading to wavy variations in N-FNFs, particularly under non-uniform porosity distributions. These findings highlight the intricate interplay between porosity, lamination, geometry, and orthotropy, offering valuable insights for optimizing porous material design in advanced engineering structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Thin-Walled Structures
Thin-Walled Structures 工程技术-工程:土木
CiteScore
9.60
自引率
20.30%
发文量
801
审稿时长
66 days
期刊介绍: Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses. Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering. The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.
期刊最新文献
Editorial Board Mechanics of finite nonlinear viscoelastic growth for soft biological tissues Comparative analysis of damage and energy absorption mechanisms in various plain-weave fiber reinforced composites under multi-angle low-velocity impact Editorial Board Experimental study on the mechanical and thermal properties of PEEK, CF/PEEK, and GF/PEEK thin-walled cylinders under static compressive tests
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1