IF 3.7 2区 化学 Q2 AUTOMATION & CONTROL SYSTEMS Chemometrics and Intelligent Laboratory Systems Pub Date : 2025-01-24 DOI:10.1016/j.chemolab.2025.105333
Min-Hsu Tai, Cheng-Che Hsu
{"title":"Reconstructing spectral shapes with GAN models: A data-driven approach for high-resolution spectra from low-resolution spectrometers","authors":"Min-Hsu Tai,&nbsp;Cheng-Che Hsu","doi":"10.1016/j.chemolab.2025.105333","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents the development of a generative adversarial network (GAN) to generate high-resolution (HR) spectra from low-resolution (LR) spectra. Plasma emissions with second positive system of nitrogen are used for demonstration. Specair™ is used to generate HR and LR spectra pairs as the training data covering the range of rotational temperatures (T<sub>rot</sub>) and vibrational temperatures (T<sub>vib</sub>) ranging from 300 to 1200 K and 2000 to 6500 K, respectively. Optical emission spectra from low-pressure and atmospheric-pressure plasmas are used as the testing data to show the feasibility of the model for generating HR spectra with spectra acquired using LR spectrometers. Feature matching is used during the training stage to tackle the instability issues. The distributions of the discriminator scores are used as an initial criterion to monitor the training procedure. The results show a weighted coefficient of determination (<span><math><mrow><msup><mover><mi>R</mi><mo>‾</mo></mover><mn>2</mn></msup></mrow></math></span>) greater than 0.9999 between the simulated and generated HR spectra. The fitting errors for T<sub>rot</sub> and T<sub>vib</sub> between generated HR spectra and experimental HR spectra acquired from an HR spectrometer are mostly below 5 %. The results indicate that this GAN serves as an efficient approach to obtain HR spectra when HR spectrometers are not available.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"258 ","pages":"Article 105333"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000188","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了生成对抗网络(GAN)的开发情况,该网络可从低分辨率(LR)光谱生成高分辨率(HR)光谱。等离子体发射的第二正氮系统被用于演示。使用 Specair™ 生成 HR 和 LR 光谱对作为训练数据,涵盖的旋转温度 (Trot) 和振动温度 (Tvib) 范围分别为 300 至 1200 K 和 2000 至 6500 K。低压和大气压等离子体的光学发射光谱被用作测试数据,以显示该模型利用 LR 光谱仪获取的光谱生成 HR 光谱的可行性。在训练阶段使用特征匹配来解决不稳定性问题。判别分数的分布被用作监测训练过程的初始标准。结果显示,模拟和生成的 HR 光谱之间的加权判定系数 (R‾2) 大于 0.9999。生成的心率频谱与从心率频谱仪获取的实验心率频谱之间的 Trot 和 Tvib 拟合误差大多低于 5%。结果表明,在没有 HR 光谱仪的情况下,该 GAN 是获取 HR 光谱的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstructing spectral shapes with GAN models: A data-driven approach for high-resolution spectra from low-resolution spectrometers
This study presents the development of a generative adversarial network (GAN) to generate high-resolution (HR) spectra from low-resolution (LR) spectra. Plasma emissions with second positive system of nitrogen are used for demonstration. Specair™ is used to generate HR and LR spectra pairs as the training data covering the range of rotational temperatures (Trot) and vibrational temperatures (Tvib) ranging from 300 to 1200 K and 2000 to 6500 K, respectively. Optical emission spectra from low-pressure and atmospheric-pressure plasmas are used as the testing data to show the feasibility of the model for generating HR spectra with spectra acquired using LR spectrometers. Feature matching is used during the training stage to tackle the instability issues. The distributions of the discriminator scores are used as an initial criterion to monitor the training procedure. The results show a weighted coefficient of determination (R2) greater than 0.9999 between the simulated and generated HR spectra. The fitting errors for Trot and Tvib between generated HR spectra and experimental HR spectra acquired from an HR spectrometer are mostly below 5 %. The results indicate that this GAN serves as an efficient approach to obtain HR spectra when HR spectrometers are not available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.50
自引率
7.70%
发文量
169
审稿时长
3.4 months
期刊介绍: Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines. Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data. The journal deals with the following topics: 1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.) 2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered. 3) Development of new software that provides novel tools or truly advances the use of chemometrical methods. 4) Well characterized data sets to test performance for the new methods and software. The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.
期刊最新文献
Optimising thermal performance of water-based hybrid nanofluids with magnetic and radiative effects over a spinning disc Design of Poly(lactic-co-glycolic acid) nanoparticles in drug delivery by artificial intelligence methods to find the conditions of nanoparticles synthesis Automatic spectral fitting for LIBS and Raman spectra by boosted deconvolution method Editorial Board Reconstructing spectral shapes with GAN models: A data-driven approach for high-resolution spectra from low-resolution spectrometers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1