用于无电子自主机器人的柔软多功能双稳态织物机构

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Science Advances Pub Date : 2025-01-31
Dezhi Yang, Miao Feng, Jianing Sun, Yexun Wei, Jiang Zou, Xiangyang Zhu, Guoying Gu
{"title":"用于无电子自主机器人的柔软多功能双稳态织物机构","authors":"Dezhi Yang,&nbsp;Miao Feng,&nbsp;Jianing Sun,&nbsp;Yexun Wei,&nbsp;Jiang Zou,&nbsp;Xiangyang Zhu,&nbsp;Guoying Gu","doi":"","DOIUrl":null,"url":null,"abstract":"<div >Pneumatic soft robots are promising in diverse applications while they typically require additional electronics or components for pressure control. Fusing pneumatic actuation and control capabilities into a simple soft module remains challenging. Here, we present a class of bistable fabric mechanisms (BFMs) that merge soft bistable actuators and valves for electronics-free autonomous robots. The BFMs comprise two bonding fabric chambers with embedded tubes, where the straightening of one chamber compels the other to buckle for the bistability of the structure and the switching of the tube kinking. Our BFMs can facilitate fast bending actuation (more than 1166° s<sup>−1</sup>), on/off and continuous pressure regulation, pneumatic logic computations, and autonomous oscillating actuation (up to 4.6 Hz). We further demonstrate the capabilities of BFMs for diverse robotic applications powered by one constant-pressure air supply: a soft gripper for dynamic grasping and a soft crawler for autonomous jumping. Our BFM development showcases unique features and huge potential in advancing entirely soft, electronics-free autonomous robots.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 5","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads8734","citationCount":"0","resultStr":"{\"title\":\"Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots\",\"authors\":\"Dezhi Yang,&nbsp;Miao Feng,&nbsp;Jianing Sun,&nbsp;Yexun Wei,&nbsp;Jiang Zou,&nbsp;Xiangyang Zhu,&nbsp;Guoying Gu\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Pneumatic soft robots are promising in diverse applications while they typically require additional electronics or components for pressure control. Fusing pneumatic actuation and control capabilities into a simple soft module remains challenging. Here, we present a class of bistable fabric mechanisms (BFMs) that merge soft bistable actuators and valves for electronics-free autonomous robots. The BFMs comprise two bonding fabric chambers with embedded tubes, where the straightening of one chamber compels the other to buckle for the bistability of the structure and the switching of the tube kinking. Our BFMs can facilitate fast bending actuation (more than 1166° s<sup>−1</sup>), on/off and continuous pressure regulation, pneumatic logic computations, and autonomous oscillating actuation (up to 4.6 Hz). We further demonstrate the capabilities of BFMs for diverse robotic applications powered by one constant-pressure air supply: a soft gripper for dynamic grasping and a soft crawler for autonomous jumping. Our BFM development showcases unique features and huge potential in advancing entirely soft, electronics-free autonomous robots.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 5\",\"pages\":\"\"},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads8734\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads8734\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads8734","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Soft multifunctional bistable fabric mechanism for electronics-free autonomous robots
Pneumatic soft robots are promising in diverse applications while they typically require additional electronics or components for pressure control. Fusing pneumatic actuation and control capabilities into a simple soft module remains challenging. Here, we present a class of bistable fabric mechanisms (BFMs) that merge soft bistable actuators and valves for electronics-free autonomous robots. The BFMs comprise two bonding fabric chambers with embedded tubes, where the straightening of one chamber compels the other to buckle for the bistability of the structure and the switching of the tube kinking. Our BFMs can facilitate fast bending actuation (more than 1166° s−1), on/off and continuous pressure regulation, pneumatic logic computations, and autonomous oscillating actuation (up to 4.6 Hz). We further demonstrate the capabilities of BFMs for diverse robotic applications powered by one constant-pressure air supply: a soft gripper for dynamic grasping and a soft crawler for autonomous jumping. Our BFM development showcases unique features and huge potential in advancing entirely soft, electronics-free autonomous robots.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
期刊最新文献
A KNOTTED1-LIKE HOMEOBOX PROTEIN1–interacting transcription factor SlGATA6 maintains the auxin-response gradient to inhibit abscission PPDPF preserves integrity of proximal tubule by modulating NMNAT activity in chronic kidney diseases Enantioselective electrochemical nickel-catalyzed vinylogous radical reactions Structure and dynamics determine G protein coupling specificity at a class A GPCR Microfluidic-derived montmorillonite composite microparticles for oral codelivery of probiotic biofilm and postbiotics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1