{"title":"参与细菌 L-鼠李糖代谢非磷酸化途径的 L-2-keto-3-deoxyrhamnonate 4-dehydrogenase 晶体结构。","authors":"Miyu Akagashi, Seiya Watanabe","doi":"10.1093/bbb/zbaf015","DOIUrl":null,"url":null,"abstract":"<p><p>In the non-phosphorylative L-rhamnose and L-fucose pathways in bacteria, the C4-OH groups of the L-2-keto-3-deoxyrhamnonate (L-KDR) and L-2-keto-3-deoxyfuconate (L-KDF) intermediates are oxidized by different NAD+-dependent dehydrogenases, which belong to the same superfamily; L-KDRDH and L-KDFDH, respectively. To further elucidate their opposite stereospecificities, we herein investigated the crystal structures of L-KDRDH (from Herbaspirillum huttiense) in ligand-free and NAD+-bound forms. The interactions between the side chains of Asp39 and Gln18, and the 2'- and/or 3'-hydroxyl group(s) of NAD+ were consistent with strict specificity for NAD+. In a binding model for the substrate, Asn151 and Arg247 interacted with the C1 carboxyl and/or C5 hydroxyl group(s) of L-KDR with the acrylic α-keto form, which differed from L-KDFDH that recognizes L-KDF with the cyclic hemiketal. A comparison of gene clusters on the bacterial genome and biochemical characterization suggested that L-KDRDH functions as a novel 4-hydroxy-2-oxopentanoate dehydrogenase in the degradation of aromatic compounds.</p>","PeriodicalId":9175,"journal":{"name":"Bioscience, Biotechnology, and Biochemistry","volume":" ","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystal structure of L-2-keto-3-deoxyrhamnonate 4-dehydrogenase involved in the non-phosphorylating pathway of L-rhamnose metabolism by bacteria.\",\"authors\":\"Miyu Akagashi, Seiya Watanabe\",\"doi\":\"10.1093/bbb/zbaf015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the non-phosphorylative L-rhamnose and L-fucose pathways in bacteria, the C4-OH groups of the L-2-keto-3-deoxyrhamnonate (L-KDR) and L-2-keto-3-deoxyfuconate (L-KDF) intermediates are oxidized by different NAD+-dependent dehydrogenases, which belong to the same superfamily; L-KDRDH and L-KDFDH, respectively. To further elucidate their opposite stereospecificities, we herein investigated the crystal structures of L-KDRDH (from Herbaspirillum huttiense) in ligand-free and NAD+-bound forms. The interactions between the side chains of Asp39 and Gln18, and the 2'- and/or 3'-hydroxyl group(s) of NAD+ were consistent with strict specificity for NAD+. In a binding model for the substrate, Asn151 and Arg247 interacted with the C1 carboxyl and/or C5 hydroxyl group(s) of L-KDR with the acrylic α-keto form, which differed from L-KDFDH that recognizes L-KDF with the cyclic hemiketal. A comparison of gene clusters on the bacterial genome and biochemical characterization suggested that L-KDRDH functions as a novel 4-hydroxy-2-oxopentanoate dehydrogenase in the degradation of aromatic compounds.</p>\",\"PeriodicalId\":9175,\"journal\":{\"name\":\"Bioscience, Biotechnology, and Biochemistry\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioscience, Biotechnology, and Biochemistry\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/bbb/zbaf015\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioscience, Biotechnology, and Biochemistry","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/bbb/zbaf015","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Crystal structure of L-2-keto-3-deoxyrhamnonate 4-dehydrogenase involved in the non-phosphorylating pathway of L-rhamnose metabolism by bacteria.
In the non-phosphorylative L-rhamnose and L-fucose pathways in bacteria, the C4-OH groups of the L-2-keto-3-deoxyrhamnonate (L-KDR) and L-2-keto-3-deoxyfuconate (L-KDF) intermediates are oxidized by different NAD+-dependent dehydrogenases, which belong to the same superfamily; L-KDRDH and L-KDFDH, respectively. To further elucidate their opposite stereospecificities, we herein investigated the crystal structures of L-KDRDH (from Herbaspirillum huttiense) in ligand-free and NAD+-bound forms. The interactions between the side chains of Asp39 and Gln18, and the 2'- and/or 3'-hydroxyl group(s) of NAD+ were consistent with strict specificity for NAD+. In a binding model for the substrate, Asn151 and Arg247 interacted with the C1 carboxyl and/or C5 hydroxyl group(s) of L-KDR with the acrylic α-keto form, which differed from L-KDFDH that recognizes L-KDF with the cyclic hemiketal. A comparison of gene clusters on the bacterial genome and biochemical characterization suggested that L-KDRDH functions as a novel 4-hydroxy-2-oxopentanoate dehydrogenase in the degradation of aromatic compounds.
期刊介绍:
Bioscience, Biotechnology, and Biochemistry publishes high-quality papers providing chemical and biological analyses of vital phenomena exhibited by animals, plants, and microorganisms, the chemical structures and functions of their products, and related matters. The Journal plays a major role in communicating to a global audience outstanding basic and applied research in all fields subsumed by the Japan Society for Bioscience, Biotechnology, and Agrochemistry (JSBBA).