特定染色体的非整倍体有利于缺乏纺锤体检查点蛋白 Bub3 的细胞。

IF 4 2区 生物学 Q1 GENETICS & HEREDITY PLoS Genetics Pub Date : 2025-02-04 eCollection Date: 2025-02-01 DOI:10.1371/journal.pgen.1011576
Pallavi Gadgil, Olivia Ballew, Timothy J Sullivan, Soni Lacefield
{"title":"特定染色体的非整倍体有利于缺乏纺锤体检查点蛋白 Bub3 的细胞。","authors":"Pallavi Gadgil, Olivia Ballew, Timothy J Sullivan, Soni Lacefield","doi":"10.1371/journal.pgen.1011576","DOIUrl":null,"url":null,"abstract":"<p><p>Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the gain of specific genes through aneuploidy may provide a survival advantage to strains with poor chromosome segregation fidelity.</p>","PeriodicalId":49007,"journal":{"name":"PLoS Genetics","volume":"21 2","pages":"e1011576"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819610/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aneuploidy of specific chromosomes is beneficial to cells lacking spindle checkpoint protein Bub3.\",\"authors\":\"Pallavi Gadgil, Olivia Ballew, Timothy J Sullivan, Soni Lacefield\",\"doi\":\"10.1371/journal.pgen.1011576\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the gain of specific genes through aneuploidy may provide a survival advantage to strains with poor chromosome segregation fidelity.</p>\",\"PeriodicalId\":49007,\"journal\":{\"name\":\"PLoS Genetics\",\"volume\":\"21 2\",\"pages\":\"e1011576\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11819610/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PLoS Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1371/journal.pgen.1011576\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pgen.1011576","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aneuploidy of specific chromosomes is beneficial to cells lacking spindle checkpoint protein Bub3.

Aneuploidy typically poses challenges for cell survival and growth. However, recent studies have identified exceptions where aneuploidy is beneficial for cells with mutations in certain regulatory genes. Our research reveals that cells lacking the spindle checkpoint gene BUB3 exhibit aneuploidy of select chromosomes. While the spindle checkpoint is not essential in budding yeast, the loss of BUB3 and BUB1 increases the probability of chromosome missegregation compared to wildtype cells. Contrary to the prevailing assumption that the aneuploid cells would be outcompeted due to growth defects, our findings demonstrate that bub3Δ cells consistently maintained aneuploidy of specific chromosomes over many generations. We investigated whether the persistence of these additional chromosomes in bub3Δ cells resulted from the beneficial elevated expression of certain genes, or mere tolerance. We identified several genes involved in chromosome segregation and cell cycle regulation that confer an advantage to Bub3-depleted cells. Overall, our results suggest that the gain of specific genes through aneuploidy may provide a survival advantage to strains with poor chromosome segregation fidelity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
PLoS Genetics
PLoS Genetics GENETICS & HEREDITY-
自引率
2.20%
发文量
438
期刊介绍: PLOS Genetics is run by an international Editorial Board, headed by the Editors-in-Chief, Greg Barsh (HudsonAlpha Institute of Biotechnology, and Stanford University School of Medicine) and Greg Copenhaver (The University of North Carolina at Chapel Hill). Articles published in PLOS Genetics are archived in PubMed Central and cited in PubMed.
期刊最新文献
Exploring adaptation routes to cold temperatures in the Saccharomyces genus. Functional constraints of wtf killer meiotic drivers. Two transmembrane transcriptional regulators coordinate to activate chitin-induced natural transformation in Vibrio cholerae. The recombination landscape of introgression in yeast. Transcriptomic analysis of iPSC-derived endothelium reveals adaptations to high altitude hypoxia in energy metabolism and inflammation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1