Boxiao Yu, Savas Ozdemir, Yafei Dong, Wei Shao, Tinsu Pan, Kuangyu Shi, Kuang Gong
{"title":"利用三维扩散模型对全身 PET 图像进行可靠去噪:对各种扫描仪、示踪剂和剂量水平进行评估","authors":"Boxiao Yu, Savas Ozdemir, Yafei Dong, Wei Shao, Tinsu Pan, Kuangyu Shi, Kuang Gong","doi":"10.1007/s00259-025-07122-4","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Purpose</h3><p>Whole-body PET imaging plays an essential role in cancer diagnosis and treatment but suffers from low image quality. Traditional deep learning-based denoising methods work well for a specific acquisition but are less effective in handling diverse PET protocols. In this study, we proposed and validated a 3D Denoising Diffusion Probabilistic Model (3D DDPM) as a robust and universal solution for whole-body PET image denoising.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>The proposed 3D DDPM gradually injected noise into the images during the forward diffusion phase, allowing the model to learn to reconstruct the clean data during the reverse diffusion process. A 3D convolutional network was trained using high-quality data from the Biograph Vision Quadra PET/CT scanner to generate the score function, enabling the model to capture accurate PET distribution information extracted from the total-body datasets. The trained 3D DDPM was evaluated on datasets from four scanners, four tracer types, and six dose levels representing a broad spectrum of clinical scenarios.</p><h3 data-test=\"abstract-sub-heading\">Results</h3><p>The proposed 3D DDPM consistently outperformed 2D DDPM, 3D UNet, and 3D GAN, demonstrating its superior denoising performance across all tested conditions. Additionally, the model’s uncertainty maps exhibited lower variance, reflecting its higher confidence in its outputs.</p><h3 data-test=\"abstract-sub-heading\">Conclusions</h3><p>The proposed 3D DDPM can effectively handle various clinical settings, including variations in dose levels, scanners, and tracers, establishing it as a promising foundational model for PET image denoising. The trained 3D DDPM model of this work can be utilized off the shelf by researchers as a whole-body PET image denoising solution. The code and model are available at https://github.com/Miche11eU/PET-Image-Denoising-Using-3D-Diffusion-Model.</p>","PeriodicalId":11909,"journal":{"name":"European Journal of Nuclear Medicine and Molecular Imaging","volume":"58 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels\",\"authors\":\"Boxiao Yu, Savas Ozdemir, Yafei Dong, Wei Shao, Tinsu Pan, Kuangyu Shi, Kuang Gong\",\"doi\":\"10.1007/s00259-025-07122-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Purpose</h3><p>Whole-body PET imaging plays an essential role in cancer diagnosis and treatment but suffers from low image quality. Traditional deep learning-based denoising methods work well for a specific acquisition but are less effective in handling diverse PET protocols. In this study, we proposed and validated a 3D Denoising Diffusion Probabilistic Model (3D DDPM) as a robust and universal solution for whole-body PET image denoising.</p><h3 data-test=\\\"abstract-sub-heading\\\">Methods</h3><p>The proposed 3D DDPM gradually injected noise into the images during the forward diffusion phase, allowing the model to learn to reconstruct the clean data during the reverse diffusion process. A 3D convolutional network was trained using high-quality data from the Biograph Vision Quadra PET/CT scanner to generate the score function, enabling the model to capture accurate PET distribution information extracted from the total-body datasets. The trained 3D DDPM was evaluated on datasets from four scanners, four tracer types, and six dose levels representing a broad spectrum of clinical scenarios.</p><h3 data-test=\\\"abstract-sub-heading\\\">Results</h3><p>The proposed 3D DDPM consistently outperformed 2D DDPM, 3D UNet, and 3D GAN, demonstrating its superior denoising performance across all tested conditions. Additionally, the model’s uncertainty maps exhibited lower variance, reflecting its higher confidence in its outputs.</p><h3 data-test=\\\"abstract-sub-heading\\\">Conclusions</h3><p>The proposed 3D DDPM can effectively handle various clinical settings, including variations in dose levels, scanners, and tracers, establishing it as a promising foundational model for PET image denoising. The trained 3D DDPM model of this work can be utilized off the shelf by researchers as a whole-body PET image denoising solution. The code and model are available at https://github.com/Miche11eU/PET-Image-Denoising-Using-3D-Diffusion-Model.</p>\",\"PeriodicalId\":11909,\"journal\":{\"name\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":8.6000,\"publicationDate\":\"2025-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Nuclear Medicine and Molecular Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00259-025-07122-4\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Nuclear Medicine and Molecular Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00259-025-07122-4","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
Robust whole-body PET image denoising using 3D diffusion models: evaluation across various scanners, tracers, and dose levels
Purpose
Whole-body PET imaging plays an essential role in cancer diagnosis and treatment but suffers from low image quality. Traditional deep learning-based denoising methods work well for a specific acquisition but are less effective in handling diverse PET protocols. In this study, we proposed and validated a 3D Denoising Diffusion Probabilistic Model (3D DDPM) as a robust and universal solution for whole-body PET image denoising.
Methods
The proposed 3D DDPM gradually injected noise into the images during the forward diffusion phase, allowing the model to learn to reconstruct the clean data during the reverse diffusion process. A 3D convolutional network was trained using high-quality data from the Biograph Vision Quadra PET/CT scanner to generate the score function, enabling the model to capture accurate PET distribution information extracted from the total-body datasets. The trained 3D DDPM was evaluated on datasets from four scanners, four tracer types, and six dose levels representing a broad spectrum of clinical scenarios.
Results
The proposed 3D DDPM consistently outperformed 2D DDPM, 3D UNet, and 3D GAN, demonstrating its superior denoising performance across all tested conditions. Additionally, the model’s uncertainty maps exhibited lower variance, reflecting its higher confidence in its outputs.
Conclusions
The proposed 3D DDPM can effectively handle various clinical settings, including variations in dose levels, scanners, and tracers, establishing it as a promising foundational model for PET image denoising. The trained 3D DDPM model of this work can be utilized off the shelf by researchers as a whole-body PET image denoising solution. The code and model are available at https://github.com/Miche11eU/PET-Image-Denoising-Using-3D-Diffusion-Model.
期刊介绍:
The European Journal of Nuclear Medicine and Molecular Imaging serves as a platform for the exchange of clinical and scientific information within nuclear medicine and related professions. It welcomes international submissions from professionals involved in the functional, metabolic, and molecular investigation of diseases. The journal's coverage spans physics, dosimetry, radiation biology, radiochemistry, and pharmacy, providing high-quality peer review by experts in the field. Known for highly cited and downloaded articles, it ensures global visibility for research work and is part of the EJNMMI journal family.