{"title":"Dynamic complexity of Holling-Tanner predator–prey system with predator cannibalism","authors":"Zhihong Zhao, Yuwei Shen","doi":"10.1016/j.matcom.2024.12.025","DOIUrl":null,"url":null,"abstract":"<div><div>Cannibalism is a common intraspecific interaction phenomenon and thus the elucidation of the mechanisms of cannibalism can enrich the ecological dynamics. In this paper, we investigate a Holling-Tanner system with predator cannibalism, which is rarely studied. For the non-spatial system, the local dynamics of the origin are fully characterized. The global dynamics of the constant positive steady state, including global stability, Hopf bifurcation and its directions, are examined. For the diffusion system, the Turing instability and global asymptotic stability for the constant steady state are derived, and the existence of Hopf bifurcation and Turing–Hopf bifurcation are studied. We found that predator cannibalism not only leads to complex dynamical behaviors around the origin in non-spatial system, but influences the global asymptotically stability and Turing instability of <span><math><msup><mrow><mi>E</mi></mrow><mrow><mo>∗</mo></mrow></msup></math></span>, as well as results in Hopf bifurcation and Turing–Hopf bifurcation of diffusion system, which can reveal the reasons for the effects of predator cannibalism on biological systems. The numerical verification of the obtained results, the evaluation of the impact of predator cannibalism on the dynamics are also presented.</div></div>","PeriodicalId":49856,"journal":{"name":"Mathematics and Computers in Simulation","volume":"232 ","pages":"Pages 227-244"},"PeriodicalIF":4.4000,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Computers in Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378475424005093","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
Dynamic complexity of Holling-Tanner predator–prey system with predator cannibalism
Cannibalism is a common intraspecific interaction phenomenon and thus the elucidation of the mechanisms of cannibalism can enrich the ecological dynamics. In this paper, we investigate a Holling-Tanner system with predator cannibalism, which is rarely studied. For the non-spatial system, the local dynamics of the origin are fully characterized. The global dynamics of the constant positive steady state, including global stability, Hopf bifurcation and its directions, are examined. For the diffusion system, the Turing instability and global asymptotic stability for the constant steady state are derived, and the existence of Hopf bifurcation and Turing–Hopf bifurcation are studied. We found that predator cannibalism not only leads to complex dynamical behaviors around the origin in non-spatial system, but influences the global asymptotically stability and Turing instability of , as well as results in Hopf bifurcation and Turing–Hopf bifurcation of diffusion system, which can reveal the reasons for the effects of predator cannibalism on biological systems. The numerical verification of the obtained results, the evaluation of the impact of predator cannibalism on the dynamics are also presented.
期刊介绍:
The aim of the journal is to provide an international forum for the dissemination of up-to-date information in the fields of the mathematics and computers, in particular (but not exclusively) as they apply to the dynamics of systems, their simulation and scientific computation in general. Published material ranges from short, concise research papers to more general tutorial articles.
Mathematics and Computers in Simulation, published monthly, is the official organ of IMACS, the International Association for Mathematics and Computers in Simulation (Formerly AICA). This Association, founded in 1955 and legally incorporated in 1956 is a member of FIACC (the Five International Associations Coordinating Committee), together with IFIP, IFAV, IFORS and IMEKO.
Topics covered by the journal include mathematical tools in:
•The foundations of systems modelling
•Numerical analysis and the development of algorithms for simulation
They also include considerations about computer hardware for simulation and about special software and compilers.
The journal also publishes articles concerned with specific applications of modelling and simulation in science and engineering, with relevant applied mathematics, the general philosophy of systems simulation, and their impact on disciplinary and interdisciplinary research.
The journal includes a Book Review section -- and a "News on IMACS" section that contains a Calendar of future Conferences/Events and other information about the Association.