Ugp1突变导致蔗糖合成受损,生长迟缓和磷酸盐积累改变。

IF 3.6 2区 生物学 Q1 PLANT SCIENCES Physiologia plantarum Pub Date : 2025-01-01 DOI:10.1111/ppl.70115
Wenqi Zhang, Tingting Wang, Cuilan Wei, Pinzhu Qin, Guohua Xu
{"title":"Ugp1突变导致蔗糖合成受损,生长迟缓和磷酸盐积累改变。","authors":"Wenqi Zhang, Tingting Wang, Cuilan Wei, Pinzhu Qin, Guohua Xu","doi":"10.1111/ppl.70115","DOIUrl":null,"url":null,"abstract":"<p><p>In response to phosphate (Pi) starvation stress, plants exhibit diverse adaptive strategies, including carbohydrate accumulation and transport to roots, which are critical for Pi deficiency signaling. However, the functional characterization of sugar metabolic genes is often hindered by the infertility of null mutants, and the role of carbohydrate biosynthetic genes in phosphorus (P) homeostasis remains unclear. Here, we functionally characterized Ugp1, a highly expressed gene in rice (Oryza sativa) that encodes UDP-glucose pyrophosphorylase. Ugp1 was expressed throughout the rice plant and was transcriptionally induced by Pi starvation in shoot tissues. Localized to the cytosol, Ugp1 was found to be responsible for the biosynthesis of the major sugar sucrose. Homozygous mutation of Ugp1 resulted in an infertile phenotype, decreased sucrose content, retarded growth and increased Pi accumulation, while heterozygous Ugp1 plants exhibited intermediate phenotypes. The increased Pi accumulation in osugp1 mutants was accompanied by the upregulation of Pi starvation-responsive genes. Notably, in vivo <sup>31</sup>P-nuclear magnetic resonance analysis revealed an increase in vacuolar and a decrease in cytoplasmic Pi concentration in osugp1 mutants. These findings indicate that Ugp1 plays a critical role in sucrose biosynthesis and is essential for sustaining normal growth and P homeostasis in rice. Its mutation will lead to impaired sucrose synthesis, retarded growth, and altered phosphorus accumulation and distribution. These results highlight the close relationship between carbon metabolism and P homeostasis, offering new perspectives for understanding the molecular mechanisms of plant responses to Pi starvation and providing a theoretical basis for future research on plant nutrient regulation.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 1","pages":"e70115"},"PeriodicalIF":3.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mutation of Ugp1 Leads to Impaired Sucrose Synthesis, Retarded Growth and Altered Phosphate Accumulation.\",\"authors\":\"Wenqi Zhang, Tingting Wang, Cuilan Wei, Pinzhu Qin, Guohua Xu\",\"doi\":\"10.1111/ppl.70115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In response to phosphate (Pi) starvation stress, plants exhibit diverse adaptive strategies, including carbohydrate accumulation and transport to roots, which are critical for Pi deficiency signaling. However, the functional characterization of sugar metabolic genes is often hindered by the infertility of null mutants, and the role of carbohydrate biosynthetic genes in phosphorus (P) homeostasis remains unclear. Here, we functionally characterized Ugp1, a highly expressed gene in rice (Oryza sativa) that encodes UDP-glucose pyrophosphorylase. Ugp1 was expressed throughout the rice plant and was transcriptionally induced by Pi starvation in shoot tissues. Localized to the cytosol, Ugp1 was found to be responsible for the biosynthesis of the major sugar sucrose. Homozygous mutation of Ugp1 resulted in an infertile phenotype, decreased sucrose content, retarded growth and increased Pi accumulation, while heterozygous Ugp1 plants exhibited intermediate phenotypes. The increased Pi accumulation in osugp1 mutants was accompanied by the upregulation of Pi starvation-responsive genes. Notably, in vivo <sup>31</sup>P-nuclear magnetic resonance analysis revealed an increase in vacuolar and a decrease in cytoplasmic Pi concentration in osugp1 mutants. These findings indicate that Ugp1 plays a critical role in sucrose biosynthesis and is essential for sustaining normal growth and P homeostasis in rice. Its mutation will lead to impaired sucrose synthesis, retarded growth, and altered phosphorus accumulation and distribution. These results highlight the close relationship between carbon metabolism and P homeostasis, offering new perspectives for understanding the molecular mechanisms of plant responses to Pi starvation and providing a theoretical basis for future research on plant nutrient regulation.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 1\",\"pages\":\"e70115\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70115\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70115","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

在磷酸盐(Pi)饥饿胁迫下,植物表现出多种适应策略,包括碳水化合物的积累和向根的运输,这对缺磷信号至关重要。然而,糖代谢基因的功能表征常常受到无效突变体不育的阻碍,碳水化合物生物合成基因在磷(P)稳态中的作用尚不清楚。在这里,我们对Ugp1进行了功能表征,Ugp1是水稻(Oryza sativa)中编码udp -葡萄糖焦磷酸化酶的高表达基因。Ugp1在整个水稻植株中表达,并通过Pi饥饿在茎部组织中转录诱导。Ugp1定位于细胞质,被发现负责主要糖蔗糖的生物合成。纯合突变的Ugp1植株表现为不育型,蔗糖含量降低,生长迟缓,Pi积累增加,而杂合突变的Ugp1植株表现为中间型。在osugp1突变体中,π积累的增加伴随着π饥饿反应基因的上调。值得注意的是,体内31p核磁共振分析显示,osugp1突变体的液泡Pi浓度增加,细胞质Pi浓度降低。这些发现表明,Ugp1在蔗糖生物合成中起着关键作用,对维持水稻正常生长和磷稳态至关重要。它的突变将导致蔗糖合成受损,生长迟缓,磷的积累和分布改变。这些结果突出了碳代谢与磷稳态之间的密切关系,为理解植物对磷饥饿反应的分子机制提供了新的视角,并为未来植物营养调控的研究提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mutation of Ugp1 Leads to Impaired Sucrose Synthesis, Retarded Growth and Altered Phosphate Accumulation.

In response to phosphate (Pi) starvation stress, plants exhibit diverse adaptive strategies, including carbohydrate accumulation and transport to roots, which are critical for Pi deficiency signaling. However, the functional characterization of sugar metabolic genes is often hindered by the infertility of null mutants, and the role of carbohydrate biosynthetic genes in phosphorus (P) homeostasis remains unclear. Here, we functionally characterized Ugp1, a highly expressed gene in rice (Oryza sativa) that encodes UDP-glucose pyrophosphorylase. Ugp1 was expressed throughout the rice plant and was transcriptionally induced by Pi starvation in shoot tissues. Localized to the cytosol, Ugp1 was found to be responsible for the biosynthesis of the major sugar sucrose. Homozygous mutation of Ugp1 resulted in an infertile phenotype, decreased sucrose content, retarded growth and increased Pi accumulation, while heterozygous Ugp1 plants exhibited intermediate phenotypes. The increased Pi accumulation in osugp1 mutants was accompanied by the upregulation of Pi starvation-responsive genes. Notably, in vivo 31P-nuclear magnetic resonance analysis revealed an increase in vacuolar and a decrease in cytoplasmic Pi concentration in osugp1 mutants. These findings indicate that Ugp1 plays a critical role in sucrose biosynthesis and is essential for sustaining normal growth and P homeostasis in rice. Its mutation will lead to impaired sucrose synthesis, retarded growth, and altered phosphorus accumulation and distribution. These results highlight the close relationship between carbon metabolism and P homeostasis, offering new perspectives for understanding the molecular mechanisms of plant responses to Pi starvation and providing a theoretical basis for future research on plant nutrient regulation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physiologia plantarum
Physiologia plantarum 生物-植物科学
CiteScore
11.00
自引率
3.10%
发文量
224
审稿时长
3.9 months
期刊介绍: Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.
期刊最新文献
Effects of 5-Aminolevulinic Acid Treatment on Fruit Quality and Peel Coloration in Hawksbill Peach. Gene Expression Characteristics for Photosynthesis During Somatic Embryo Seed-Like Germination of Rosa hybrida. From Stress to Success: Harnessing Pre- and Post-Harvest Seed Priming. Phosphate Levels: The Hidden Gatekeepers of the Rice-Blast Pathosystem. Molecular Basis of Phenotypic Plasticity: Understory-Induced DNA Methylation and Phytohormone Shifts Optimize Atractylodes lancea (Thunb.) DC Quality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1