DNA 甲基化调控轴 miR-29b-3p/DNMT3B 通过改变 LATS1 调控肝脏再生过程

Yinwen Zhou, Hao Wu, Qiu Wang, Bo Ma, Jiulong Sun, Guoliang Wang
{"title":"DNA 甲基化调控轴 miR-29b-3p/DNMT3B 通过改变 LATS1 调控肝脏再生过程","authors":"Yinwen Zhou,&nbsp;Hao Wu,&nbsp;Qiu Wang,&nbsp;Bo Ma,&nbsp;Jiulong Sun,&nbsp;Guoliang Wang","doi":"10.1111/jcmm.70405","DOIUrl":null,"url":null,"abstract":"<p>DNA methylation is a crucial epigenetic alteration involved in diverse biological processes and diseases. Hippo signalling pathway is a key signalling regulatory network in the growth and development of tissues and organs. Nevertheless, the precise role of DNA methylation and Hippo signalling pathway during liver regeneration (PH) is still unclear. In this study, we investigated the regulatory mechanism of LATS1, a pivotal protein in the Hippo signalling pathway, on liver regeneration and explored the specific mechanism of DNA methylation regulating LATS1. To analyse the regulation of LATS1 by DNA methylation, following 2/3 partial hepatectomy (PH) in liver-specific AAV-8 shDNMT3B deleted mice (<i>DNMT3B</i>, KD) mice and sex-matched AAV-8 shControl (Control). We determined that DNMT3B regulates the protein expression of LATS1 by DNA methylation. miR-29b-3p significantly regulates the expression of DNMT3B and alters LATS1 expression to inactivate the Hippo signalling pathway, thereby reducing the expression of cell proliferation and cycle proteins and inhibiting liver regeneration. Our results indicated that the miR-29b-3p/DNMT3B regulatory axis influences LATS1 expression through DNA methylation, and thereby promotes liver regeneration.</p>","PeriodicalId":101321,"journal":{"name":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","volume":"29 3","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70405","citationCount":"0","resultStr":"{\"title\":\"DNA Methylation Regulatory Axis miR-29b-3p/DNMT3B Regulates Liver Regeneration Process by Altering LATS1\",\"authors\":\"Yinwen Zhou,&nbsp;Hao Wu,&nbsp;Qiu Wang,&nbsp;Bo Ma,&nbsp;Jiulong Sun,&nbsp;Guoliang Wang\",\"doi\":\"10.1111/jcmm.70405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>DNA methylation is a crucial epigenetic alteration involved in diverse biological processes and diseases. Hippo signalling pathway is a key signalling regulatory network in the growth and development of tissues and organs. Nevertheless, the precise role of DNA methylation and Hippo signalling pathway during liver regeneration (PH) is still unclear. In this study, we investigated the regulatory mechanism of LATS1, a pivotal protein in the Hippo signalling pathway, on liver regeneration and explored the specific mechanism of DNA methylation regulating LATS1. To analyse the regulation of LATS1 by DNA methylation, following 2/3 partial hepatectomy (PH) in liver-specific AAV-8 shDNMT3B deleted mice (<i>DNMT3B</i>, KD) mice and sex-matched AAV-8 shControl (Control). We determined that DNMT3B regulates the protein expression of LATS1 by DNA methylation. miR-29b-3p significantly regulates the expression of DNMT3B and alters LATS1 expression to inactivate the Hippo signalling pathway, thereby reducing the expression of cell proliferation and cycle proteins and inhibiting liver regeneration. Our results indicated that the miR-29b-3p/DNMT3B regulatory axis influences LATS1 expression through DNA methylation, and thereby promotes liver regeneration.</p>\",\"PeriodicalId\":101321,\"journal\":{\"name\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"volume\":\"29 3\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jcmm.70405\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF CELLULAR AND MOLECULAR MEDICINE","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jcmm.70405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DNA Methylation Regulatory Axis miR-29b-3p/DNMT3B Regulates Liver Regeneration Process by Altering LATS1

DNA methylation is a crucial epigenetic alteration involved in diverse biological processes and diseases. Hippo signalling pathway is a key signalling regulatory network in the growth and development of tissues and organs. Nevertheless, the precise role of DNA methylation and Hippo signalling pathway during liver regeneration (PH) is still unclear. In this study, we investigated the regulatory mechanism of LATS1, a pivotal protein in the Hippo signalling pathway, on liver regeneration and explored the specific mechanism of DNA methylation regulating LATS1. To analyse the regulation of LATS1 by DNA methylation, following 2/3 partial hepatectomy (PH) in liver-specific AAV-8 shDNMT3B deleted mice (DNMT3B, KD) mice and sex-matched AAV-8 shControl (Control). We determined that DNMT3B regulates the protein expression of LATS1 by DNA methylation. miR-29b-3p significantly regulates the expression of DNMT3B and alters LATS1 expression to inactivate the Hippo signalling pathway, thereby reducing the expression of cell proliferation and cycle proteins and inhibiting liver regeneration. Our results indicated that the miR-29b-3p/DNMT3B regulatory axis influences LATS1 expression through DNA methylation, and thereby promotes liver regeneration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
11.50
自引率
0.00%
发文量
0
期刊介绍: The Journal of Cellular and Molecular Medicine serves as a bridge between physiology and cellular medicine, as well as molecular biology and molecular therapeutics. With a 20-year history, the journal adopts an interdisciplinary approach to showcase innovative discoveries. It publishes research aimed at advancing the collective understanding of the cellular and molecular mechanisms underlying diseases. The journal emphasizes translational studies that translate this knowledge into therapeutic strategies. Being fully open access, the journal is accessible to all readers.
期刊最新文献
Methyltransferase-Like 3-Mediated N6-Methyladenosine Modification on RNAs: A Novel Perspective for the Pathogenesis and Treatment of Bone Diseases CD39 Contributes to the Ability of Cell Invasion in Heterogeneity of Colorectal Cancer YBX1 Modulates Intimal Hyperplasia by Regulating Expression and Alternative Splicing of Cell Cycle Associated Genes in RASMCs Ecdysterone Alleviates Atherosclerosis by Inhibiting NCF2 and Inhibiting Ferroptosis Mediated by the PI3K/Akt/Nrf2 Pathway Macrophage A2aR Alleviates LPS-Induced Vascular Endothelial Injury and Inflammation via Inhibiting M1 Polarisation and Oxidative Stress
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1