Eva Rexigel, Jonas Bley, Alda Arias, Linda Qerimi, Stefan Küchemann, Jochen Kuhn, Artur Widera
{"title":"调查在大学量子技术课程中使用多重表征的情况","authors":"Eva Rexigel, Jonas Bley, Alda Arias, Linda Qerimi, Stefan Küchemann, Jochen Kuhn, Artur Widera","doi":"10.1140/epjqt/s40507-025-00327-4","DOIUrl":null,"url":null,"abstract":"<div><p>The field of Quantum Information Science and Technology (QIST) education presents unique challenges for both students and educators, such as the necessity of understanding abstract properties of quantum systems. To provide a more intuitive understanding of quantum systems, a multitude of qubit representations have been developed in recent years. Given the diversity of the field, a specific representation may be more suitable in one content area of than in another. Consequently, the choice of representation may vary considerably depending on the course orientation. However, no exhaustive analysis has been conducted into the differences between the representation of single- and multi-qubit systems in higher education QIST courses. Furthermore, the factors which influence the selection of a suitable representation remain open. To close this gap, we conducted an online survey with 25 educators at different German and Austrian universities on their use of representations in QIST-related courses. The results confirm the pivotal role of mathematical formalism in QIST education regardless of the specific course characteristics but also reveal an untapped potential for enhancing student learning through the intentional and comprehensive use of multiple external representations (MERs), especially in the case of multi-qubit systems. The findings are discussed within the context of the field of QIST and current insights into learning with MERs.</p></div>","PeriodicalId":547,"journal":{"name":"EPJ Quantum Technology","volume":"12 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00327-4","citationCount":"0","resultStr":"{\"title\":\"Investigating the use of multiple representations in university courses on quantum technologies\",\"authors\":\"Eva Rexigel, Jonas Bley, Alda Arias, Linda Qerimi, Stefan Küchemann, Jochen Kuhn, Artur Widera\",\"doi\":\"10.1140/epjqt/s40507-025-00327-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The field of Quantum Information Science and Technology (QIST) education presents unique challenges for both students and educators, such as the necessity of understanding abstract properties of quantum systems. To provide a more intuitive understanding of quantum systems, a multitude of qubit representations have been developed in recent years. Given the diversity of the field, a specific representation may be more suitable in one content area of than in another. Consequently, the choice of representation may vary considerably depending on the course orientation. However, no exhaustive analysis has been conducted into the differences between the representation of single- and multi-qubit systems in higher education QIST courses. Furthermore, the factors which influence the selection of a suitable representation remain open. To close this gap, we conducted an online survey with 25 educators at different German and Austrian universities on their use of representations in QIST-related courses. The results confirm the pivotal role of mathematical formalism in QIST education regardless of the specific course characteristics but also reveal an untapped potential for enhancing student learning through the intentional and comprehensive use of multiple external representations (MERs), especially in the case of multi-qubit systems. The findings are discussed within the context of the field of QIST and current insights into learning with MERs.</p></div>\",\"PeriodicalId\":547,\"journal\":{\"name\":\"EPJ Quantum Technology\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://epjquantumtechnology.springeropen.com/counter/pdf/10.1140/epjqt/s40507-025-00327-4\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Quantum Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjqt/s40507-025-00327-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Quantum Technology","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1140/epjqt/s40507-025-00327-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
Investigating the use of multiple representations in university courses on quantum technologies
The field of Quantum Information Science and Technology (QIST) education presents unique challenges for both students and educators, such as the necessity of understanding abstract properties of quantum systems. To provide a more intuitive understanding of quantum systems, a multitude of qubit representations have been developed in recent years. Given the diversity of the field, a specific representation may be more suitable in one content area of than in another. Consequently, the choice of representation may vary considerably depending on the course orientation. However, no exhaustive analysis has been conducted into the differences between the representation of single- and multi-qubit systems in higher education QIST courses. Furthermore, the factors which influence the selection of a suitable representation remain open. To close this gap, we conducted an online survey with 25 educators at different German and Austrian universities on their use of representations in QIST-related courses. The results confirm the pivotal role of mathematical formalism in QIST education regardless of the specific course characteristics but also reveal an untapped potential for enhancing student learning through the intentional and comprehensive use of multiple external representations (MERs), especially in the case of multi-qubit systems. The findings are discussed within the context of the field of QIST and current insights into learning with MERs.
期刊介绍:
Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics.
EPJ Quantum Technology covers theoretical and experimental advances in subjects including but not limited to the following:
Quantum measurement, metrology and lithography
Quantum complex systems, networks and cellular automata
Quantum electromechanical systems
Quantum optomechanical systems
Quantum machines, engineering and nanorobotics
Quantum control theory
Quantum information, communication and computation
Quantum thermodynamics
Quantum metamaterials
The effect of Casimir forces on micro- and nano-electromechanical systems
Quantum biology
Quantum sensing
Hybrid quantum systems
Quantum simulations.