有丝分裂神经母细胞的检测为成年小肠肠肌丛的稳态神经发生提供了更多证据。

IF 2.7 3区 医学 Q3 NEUROSCIENCES eNeuro Pub Date : 2025-02-11 DOI:10.1523/ENEURO.0005-24.2025
Anastazja M Gorecki, Jared Slosberg, Su Min Hong, Philippa Seika, Srinivas Puttapaka, Blake Migden, Anton Gulko, Alpana Singh, Chengxiu Zhang, Rohin Gurumurthy, Subhash Kulkarni
{"title":"有丝分裂神经母细胞的检测为成年小肠肠肌丛的稳态神经发生提供了更多证据。","authors":"Anastazja M Gorecki, Jared Slosberg, Su Min Hong, Philippa Seika, Srinivas Puttapaka, Blake Migden, Anton Gulko, Alpana Singh, Chengxiu Zhang, Rohin Gurumurthy, Subhash Kulkarni","doi":"10.1523/ENEURO.0005-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Maintenance of normal structure of the enteric nervous system (ENS), which regulates key gastrointestinal functions, requires robust homeostatic mechanisms, since by virtue of its location within the gut wall, the ENS is subject to constant mechanical, chemical, and biological stressors. Using transgenic and thymidine analogue-based experiments, we previously discovered that neuronal turnover - where continual neurogenesis offsets ongoing neuronal loss at steady state - represents one such mechanism. Although other studies confirmed that neuronal death continues into adulthood in the myenteric plexus of the enteric nervous system (ENS), the complicated nature of thymidine analogue presents challenges in substantiating the occurrence of adult neurogenesis. Therefore, it's vital to employ alternative, well-recognized techniques to substantiate the existence of adult enteric neurogenesis in the healthy gut. Here, by using established methods of assessing nuclear DNA content and detecting known mitotic marker phosphor-histone H3 (pH3) in Hu<sup>+</sup> adult ENS cells, we show that ∼10% of adult small intestinal myenteric Hu<sup>+</sup> cells in mice, and ∼20% of adult human small intestinal myenteric Hu<sup>+</sup> cells show evidence of mitosis and hence are cycling neuroblasts. We observe that proportions of Hu<sup>+</sup> cycling neuroblasts in the adult murine ENS neither vary with ganglia size, nor do they differ significantly between two intestinal regions - duodenum and ileum, or between sexes. Confocal microscopy provides further evidence of cytokinesis in Hu<sup>+</sup> cells. The presence of a significant population of cycling neuroblasts in adult ENS provide further evidence of steady state neurogenesis in the adult ENS.<b>Significance statement</b> Using 3-dimensional confocal microscopy, immunohistochemical detection of cell cycle marker phosphor-Histone H3, and DNA content assessments using flow cytometry in Hu+ cells from adult small intestinal murine myenteric plexus, we show that ∼10% of myenteric Hu+ cells in adult gut are mitotic neuroblasts, whose proportional representation does not significantly differ between sexes or small intestinal regions. We further test and observe mitotic marker pH3 also immunolabels ∼23% of adult human myenteric Hu+ cells suggesting that presence of mitotic neuroblasts also extends to the adult human gut. These data further evidence of steady state adult enteric neurogenesis in the healthy gut and provide important cellular details in understanding how precursor cells continually generate large numbers of adult neurons in healthy gut.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of mitotic neuroblasts provides additional evidence of steady state neurogenesis in the adult small intestinal myenteric plexus.\",\"authors\":\"Anastazja M Gorecki, Jared Slosberg, Su Min Hong, Philippa Seika, Srinivas Puttapaka, Blake Migden, Anton Gulko, Alpana Singh, Chengxiu Zhang, Rohin Gurumurthy, Subhash Kulkarni\",\"doi\":\"10.1523/ENEURO.0005-24.2025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Maintenance of normal structure of the enteric nervous system (ENS), which regulates key gastrointestinal functions, requires robust homeostatic mechanisms, since by virtue of its location within the gut wall, the ENS is subject to constant mechanical, chemical, and biological stressors. Using transgenic and thymidine analogue-based experiments, we previously discovered that neuronal turnover - where continual neurogenesis offsets ongoing neuronal loss at steady state - represents one such mechanism. Although other studies confirmed that neuronal death continues into adulthood in the myenteric plexus of the enteric nervous system (ENS), the complicated nature of thymidine analogue presents challenges in substantiating the occurrence of adult neurogenesis. Therefore, it's vital to employ alternative, well-recognized techniques to substantiate the existence of adult enteric neurogenesis in the healthy gut. Here, by using established methods of assessing nuclear DNA content and detecting known mitotic marker phosphor-histone H3 (pH3) in Hu<sup>+</sup> adult ENS cells, we show that ∼10% of adult small intestinal myenteric Hu<sup>+</sup> cells in mice, and ∼20% of adult human small intestinal myenteric Hu<sup>+</sup> cells show evidence of mitosis and hence are cycling neuroblasts. We observe that proportions of Hu<sup>+</sup> cycling neuroblasts in the adult murine ENS neither vary with ganglia size, nor do they differ significantly between two intestinal regions - duodenum and ileum, or between sexes. Confocal microscopy provides further evidence of cytokinesis in Hu<sup>+</sup> cells. The presence of a significant population of cycling neuroblasts in adult ENS provide further evidence of steady state neurogenesis in the adult ENS.<b>Significance statement</b> Using 3-dimensional confocal microscopy, immunohistochemical detection of cell cycle marker phosphor-Histone H3, and DNA content assessments using flow cytometry in Hu+ cells from adult small intestinal murine myenteric plexus, we show that ∼10% of myenteric Hu+ cells in adult gut are mitotic neuroblasts, whose proportional representation does not significantly differ between sexes or small intestinal regions. We further test and observe mitotic marker pH3 also immunolabels ∼23% of adult human myenteric Hu+ cells suggesting that presence of mitotic neuroblasts also extends to the adult human gut. These data further evidence of steady state adult enteric neurogenesis in the healthy gut and provide important cellular details in understanding how precursor cells continually generate large numbers of adult neurons in healthy gut.</p>\",\"PeriodicalId\":11617,\"journal\":{\"name\":\"eNeuro\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eNeuro\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1523/ENEURO.0005-24.2025\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0005-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of mitotic neuroblasts provides additional evidence of steady state neurogenesis in the adult small intestinal myenteric plexus.

Maintenance of normal structure of the enteric nervous system (ENS), which regulates key gastrointestinal functions, requires robust homeostatic mechanisms, since by virtue of its location within the gut wall, the ENS is subject to constant mechanical, chemical, and biological stressors. Using transgenic and thymidine analogue-based experiments, we previously discovered that neuronal turnover - where continual neurogenesis offsets ongoing neuronal loss at steady state - represents one such mechanism. Although other studies confirmed that neuronal death continues into adulthood in the myenteric plexus of the enteric nervous system (ENS), the complicated nature of thymidine analogue presents challenges in substantiating the occurrence of adult neurogenesis. Therefore, it's vital to employ alternative, well-recognized techniques to substantiate the existence of adult enteric neurogenesis in the healthy gut. Here, by using established methods of assessing nuclear DNA content and detecting known mitotic marker phosphor-histone H3 (pH3) in Hu+ adult ENS cells, we show that ∼10% of adult small intestinal myenteric Hu+ cells in mice, and ∼20% of adult human small intestinal myenteric Hu+ cells show evidence of mitosis and hence are cycling neuroblasts. We observe that proportions of Hu+ cycling neuroblasts in the adult murine ENS neither vary with ganglia size, nor do they differ significantly between two intestinal regions - duodenum and ileum, or between sexes. Confocal microscopy provides further evidence of cytokinesis in Hu+ cells. The presence of a significant population of cycling neuroblasts in adult ENS provide further evidence of steady state neurogenesis in the adult ENS.Significance statement Using 3-dimensional confocal microscopy, immunohistochemical detection of cell cycle marker phosphor-Histone H3, and DNA content assessments using flow cytometry in Hu+ cells from adult small intestinal murine myenteric plexus, we show that ∼10% of myenteric Hu+ cells in adult gut are mitotic neuroblasts, whose proportional representation does not significantly differ between sexes or small intestinal regions. We further test and observe mitotic marker pH3 also immunolabels ∼23% of adult human myenteric Hu+ cells suggesting that presence of mitotic neuroblasts also extends to the adult human gut. These data further evidence of steady state adult enteric neurogenesis in the healthy gut and provide important cellular details in understanding how precursor cells continually generate large numbers of adult neurons in healthy gut.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
期刊最新文献
Spatial Heterogeneity in Myelin Sheathing Impacts Signaling Reliability and Susceptibility to Injury. Temporal Lobectomy Evidence for the Role of the Amygdala in Early Emotional Face and Body Processing. Neuronal Properties in the Lateral Habenula and Adult-Newborn Interactions in Virgin Female and Male Mice. Decoding Visual Spatial Attention Control. Cholecystokinin modulates corticostriatal transmission and plasticity in rodents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1