Vasily G Panferov, Wenjun Zhang, Nicholas D'Abruzzo, Juewen Liu
{"title":"增强金纳米粒子的过氧化物酶模拟活性,用于侧向流动检测:从动力学角度进行定量评估。","authors":"Vasily G Panferov, Wenjun Zhang, Nicholas D'Abruzzo, Juewen Liu","doi":"10.1021/acs.langmuir.4c05238","DOIUrl":null,"url":null,"abstract":"<p><p>Highly sensitive lateral flow immunoassays (LFIAs) are essential for various point-of-care applications, and gold nanoparticles (Au NPs) are by far the most commonly used labels. However, conventional LFIAs often suffer from high detection limits (LOD) or low sensitivity. In this study, we investigated three strategies to enhance the sensitivity of LFIAs by improving the peroxidase-mimicking (POD) activity of Au NPs. The POD activity of unmodified Au NPs was negligible (<0.01 units/mg, U/mg). The first strategy involved coupling Au NPs with horseradish peroxidase (HRP), which increased the POD activity to 65 U/mg. The second approach involved forming a thin palladium or iridium shell on Au NPs, which elevated the POD activity to 0.69-0.71 U/mg. The third strategy involved binding mercury ions (Hg<sup>2+</sup>) to Au NPs, resulting in a POD activity of up to 3 U/mg. Finally, we developed a simple quantitative model to estimate the LOD of LFIAs based on the POD kinetic parameters. Using Au-HRP conjugates, we demonstrated that the experimentally measured LOD was consistent with the calculated values. The developed model provides a framework for evaluating LFIAs with catalytic signal amplification and can be used to guide the development of highly sensitive assays.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"4894-4905"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing the Peroxidase-Mimicking Activity of Gold Nanoparticles for Lateral Flow Assays: Quantitative Evaluation in a Kinetic View.\",\"authors\":\"Vasily G Panferov, Wenjun Zhang, Nicholas D'Abruzzo, Juewen Liu\",\"doi\":\"10.1021/acs.langmuir.4c05238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Highly sensitive lateral flow immunoassays (LFIAs) are essential for various point-of-care applications, and gold nanoparticles (Au NPs) are by far the most commonly used labels. However, conventional LFIAs often suffer from high detection limits (LOD) or low sensitivity. In this study, we investigated three strategies to enhance the sensitivity of LFIAs by improving the peroxidase-mimicking (POD) activity of Au NPs. The POD activity of unmodified Au NPs was negligible (<0.01 units/mg, U/mg). The first strategy involved coupling Au NPs with horseradish peroxidase (HRP), which increased the POD activity to 65 U/mg. The second approach involved forming a thin palladium or iridium shell on Au NPs, which elevated the POD activity to 0.69-0.71 U/mg. The third strategy involved binding mercury ions (Hg<sup>2+</sup>) to Au NPs, resulting in a POD activity of up to 3 U/mg. Finally, we developed a simple quantitative model to estimate the LOD of LFIAs based on the POD kinetic parameters. Using Au-HRP conjugates, we demonstrated that the experimentally measured LOD was consistent with the calculated values. The developed model provides a framework for evaluating LFIAs with catalytic signal amplification and can be used to guide the development of highly sensitive assays.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"4894-4905\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c05238\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c05238","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/14 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing the Peroxidase-Mimicking Activity of Gold Nanoparticles for Lateral Flow Assays: Quantitative Evaluation in a Kinetic View.
Highly sensitive lateral flow immunoassays (LFIAs) are essential for various point-of-care applications, and gold nanoparticles (Au NPs) are by far the most commonly used labels. However, conventional LFIAs often suffer from high detection limits (LOD) or low sensitivity. In this study, we investigated three strategies to enhance the sensitivity of LFIAs by improving the peroxidase-mimicking (POD) activity of Au NPs. The POD activity of unmodified Au NPs was negligible (<0.01 units/mg, U/mg). The first strategy involved coupling Au NPs with horseradish peroxidase (HRP), which increased the POD activity to 65 U/mg. The second approach involved forming a thin palladium or iridium shell on Au NPs, which elevated the POD activity to 0.69-0.71 U/mg. The third strategy involved binding mercury ions (Hg2+) to Au NPs, resulting in a POD activity of up to 3 U/mg. Finally, we developed a simple quantitative model to estimate the LOD of LFIAs based on the POD kinetic parameters. Using Au-HRP conjugates, we demonstrated that the experimentally measured LOD was consistent with the calculated values. The developed model provides a framework for evaluating LFIAs with catalytic signal amplification and can be used to guide the development of highly sensitive assays.
期刊介绍:
Langmuir is an interdisciplinary journal publishing articles in the following subject categories:
Colloids: surfactants and self-assembly, dispersions, emulsions, foams
Interfaces: adsorption, reactions, films, forces
Biological Interfaces: biocolloids, biomolecular and biomimetic materials
Materials: nano- and mesostructured materials, polymers, gels, liquid crystals
Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry
Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals
However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do?
Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*.
This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).