加工金属玻璃时 CBN 工具的磨损机理及其对表面粗糙度的影响

IF 4.2 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY International Journal of Refractory Metals & Hard Materials Pub Date : 2025-02-01 DOI:10.1016/j.ijrmhm.2025.107082
Wenbin He , Yaoxuan Guo , Dingkun Wang , Wuyi Ming , Guoyong Ye , Xiaoke Li , Yongqiang Wang , Jinguang Du
{"title":"加工金属玻璃时 CBN 工具的磨损机理及其对表面粗糙度的影响","authors":"Wenbin He ,&nbsp;Yaoxuan Guo ,&nbsp;Dingkun Wang ,&nbsp;Wuyi Ming ,&nbsp;Guoyong Ye ,&nbsp;Xiaoke Li ,&nbsp;Yongqiang Wang ,&nbsp;Jinguang Du","doi":"10.1016/j.ijrmhm.2025.107082","DOIUrl":null,"url":null,"abstract":"<div><div>Metallic glass is widely used owing to its excellent properties such as high strength, high hardness, and high elastic limit. Due to its challenging machining characteristics, analyzing tool wear during the machining process is of great significance for broader application. This paper presents an experimental study on the wear behavior and performance characteristics of CBN tools with a negative chamfering structure when cutting Vit1 under different cutting conditions. The analysis explored the impact of cutting parameters on the tool wear process. It shows that the cutting parameters affected the tool-wear stages. Under high cutting parameters, the tool bypasses the normal wear stage and transitions directly to the rapid wear phase. The rake face exhibits cratering and fine chipping, whereas the flank face displays normal wear bands and groove wear. The wear mechanisms of the CBN tools when cutting Vit1 include abrasive, diffusion, oxidation, and adhesive wear. These types of wear are caused by several mechanisms. The machined surface roughness is influenced not only by the increased tool wear but also by the surface quality of the wear zone on the flank face and chip adhesion.</div></div>","PeriodicalId":14216,"journal":{"name":"International Journal of Refractory Metals & Hard Materials","volume":"128 ","pages":"Article 107082"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wear mechanisms and its effect of CBN tool on surface roughness in machining of metallic glass\",\"authors\":\"Wenbin He ,&nbsp;Yaoxuan Guo ,&nbsp;Dingkun Wang ,&nbsp;Wuyi Ming ,&nbsp;Guoyong Ye ,&nbsp;Xiaoke Li ,&nbsp;Yongqiang Wang ,&nbsp;Jinguang Du\",\"doi\":\"10.1016/j.ijrmhm.2025.107082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Metallic glass is widely used owing to its excellent properties such as high strength, high hardness, and high elastic limit. Due to its challenging machining characteristics, analyzing tool wear during the machining process is of great significance for broader application. This paper presents an experimental study on the wear behavior and performance characteristics of CBN tools with a negative chamfering structure when cutting Vit1 under different cutting conditions. The analysis explored the impact of cutting parameters on the tool wear process. It shows that the cutting parameters affected the tool-wear stages. Under high cutting parameters, the tool bypasses the normal wear stage and transitions directly to the rapid wear phase. The rake face exhibits cratering and fine chipping, whereas the flank face displays normal wear bands and groove wear. The wear mechanisms of the CBN tools when cutting Vit1 include abrasive, diffusion, oxidation, and adhesive wear. These types of wear are caused by several mechanisms. The machined surface roughness is influenced not only by the increased tool wear but also by the surface quality of the wear zone on the flank face and chip adhesion.</div></div>\",\"PeriodicalId\":14216,\"journal\":{\"name\":\"International Journal of Refractory Metals & Hard Materials\",\"volume\":\"128 \",\"pages\":\"Article 107082\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refractory Metals & Hard Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263436825000472\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refractory Metals & Hard Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263436825000472","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Wear mechanisms and its effect of CBN tool on surface roughness in machining of metallic glass
Metallic glass is widely used owing to its excellent properties such as high strength, high hardness, and high elastic limit. Due to its challenging machining characteristics, analyzing tool wear during the machining process is of great significance for broader application. This paper presents an experimental study on the wear behavior and performance characteristics of CBN tools with a negative chamfering structure when cutting Vit1 under different cutting conditions. The analysis explored the impact of cutting parameters on the tool wear process. It shows that the cutting parameters affected the tool-wear stages. Under high cutting parameters, the tool bypasses the normal wear stage and transitions directly to the rapid wear phase. The rake face exhibits cratering and fine chipping, whereas the flank face displays normal wear bands and groove wear. The wear mechanisms of the CBN tools when cutting Vit1 include abrasive, diffusion, oxidation, and adhesive wear. These types of wear are caused by several mechanisms. The machined surface roughness is influenced not only by the increased tool wear but also by the surface quality of the wear zone on the flank face and chip adhesion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.00
自引率
13.90%
发文量
236
审稿时长
35 days
期刊介绍: The International Journal of Refractory Metals and Hard Materials (IJRMHM) publishes original research articles concerned with all aspects of refractory metals and hard materials. Refractory metals are defined as metals with melting points higher than 1800 °C. These are tungsten, molybdenum, chromium, tantalum, niobium, hafnium, and rhenium, as well as many compounds and alloys based thereupon. Hard materials that are included in the scope of this journal are defined as materials with hardness values higher than 1000 kg/mm2, primarily intended for applications as manufacturing tools or wear resistant components in mechanical systems. Thus they encompass carbides, nitrides and borides of metals, and related compounds. A special focus of this journal is put on the family of hardmetals, which is also known as cemented tungsten carbide, and cermets which are based on titanium carbide and carbonitrides with or without a metal binder. Ceramics and superhard materials including diamond and cubic boron nitride may also be accepted provided the subject material is presented as hard materials as defined above.
期刊最新文献
A comprehensive study for microstructure and properties of Mo2TiAlC2 MAX phase: Linking first-principle simulation and experimental approach Densification and property improvement of Mo-Cu immiscible alloys processed by repressing and re-sintering Influence of laser machining process on the ablation amount and organizational properties of cemented carbide Experimental research on the double-sided grinding of PCBN materials with different microstructures Effect of selective laser melting process parameters on the microstructure and properties of WCu20 composite
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1