用于增强低温二氧化碳甲烷化的铈改性高孔隙率 Ni/Al2O3 球体

IF 6.7 1区 工程技术 Q2 ENERGY & FUELS Fuel Pub Date : 2025-02-17 DOI:10.1016/j.fuel.2025.134736
Shafqat Ullah , Tianyi Huang , Yongqi Pan , Qiangqiang Xue , Zhiyuan Yu , Yizhi Hu , Syed Musab Ahmed , Runping Ye , Yujun Wang , Guangsheng Luo
{"title":"用于增强低温二氧化碳甲烷化的铈改性高孔隙率 Ni/Al2O3 球体","authors":"Shafqat Ullah ,&nbsp;Tianyi Huang ,&nbsp;Yongqi Pan ,&nbsp;Qiangqiang Xue ,&nbsp;Zhiyuan Yu ,&nbsp;Yizhi Hu ,&nbsp;Syed Musab Ahmed ,&nbsp;Runping Ye ,&nbsp;Yujun Wang ,&nbsp;Guangsheng Luo","doi":"10.1016/j.fuel.2025.134736","DOIUrl":null,"url":null,"abstract":"<div><div>CO<sub>2</sub> transformation poses a key challenge due to its thermodynamic stability and chemical inertness. Low-temperature methanation offers near-equilibrium CO<sub>2</sub> conversion to methane at ambient pressure, a promising strategy for carbon neutrality. However, effectively catalyzing CO<sub>2</sub> activation at low temperatures presents a key challenge due to the kinetic constraints of the hydrogenation intermediates. This study investigates the influence of high pore volume and Ce loading on the catalytic performance of Ni/Al<sub>2</sub>O<sub>3</sub> spheres prepared by the wet impregnation method. Initially, high pore volume Al<sub>2</sub>O<sub>3</sub> spheres were synthesized in microchannels, and their catalytic performance was compared with that of two commercially available Al<sub>2</sub>O<sub>3</sub> supports. Ni/Al<sub>2</sub>O<sub>3</sub> spheres with high specific surface area (267 m<sup>2</sup>/g) and pore volume (0.97 mL/g) showed 73 % CO<sub>2</sub> conversion compared to 59 % and 55 % on commercial-1 and commercial-2 supports at 325 °C and a GHSV of 16000 mL⋅g<sub>cat</sub><sup>−1</sup>⋅h<sup>−1</sup>. Then, various amounts of Ce were doped on Ni/Al<sub>2</sub>O<sub>3</sub> spheres to further enhance CO<sub>2</sub> methanation performance, and results revealed NiCe<sub>7.5</sub>/Al<sub>2</sub>O<sub>3</sub> possessed 86 % CO<sub>2</sub> conversion, 99.9 % CH<sub>4</sub> selectivity and a methane STY of 122 mmol. gcat<sup>−1</sup>.h<sup>−1</sup> at 250 °C. Advanced <em>in-situ</em> characterization approaches, featuring <em>in-situ</em> Raman, quasi <em>in-situ</em> XPS, and HAADF-STEM revealed that the incorporation of Ce promotes Ni dispersion, decreases particle size, and promotes abundant oxygen vacancies resulting in efficient CO<sub>2</sub> methanation. <em>In-situ</em> DRIFTS and DFT studies revealed that the NiCe<sub>7.5</sub>/Al<sub>2</sub>O<sub>3</sub> follows the CO<sub>2</sub> hydrogenation formate pathway to produce CH<sub>4</sub>. This efficient low-temperature CO<sub>2</sub> methanation demonstrates the superior catalytic performance is associated with higher pore structure and Ce doping on Ni/Al<sub>2</sub>O<sub>3</sub> spheres.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"390 ","pages":"Article 134736"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ceria-modified high pore volume Ni/Al2O3 spheres for enhanced low-temperature CO2 methanation\",\"authors\":\"Shafqat Ullah ,&nbsp;Tianyi Huang ,&nbsp;Yongqi Pan ,&nbsp;Qiangqiang Xue ,&nbsp;Zhiyuan Yu ,&nbsp;Yizhi Hu ,&nbsp;Syed Musab Ahmed ,&nbsp;Runping Ye ,&nbsp;Yujun Wang ,&nbsp;Guangsheng Luo\",\"doi\":\"10.1016/j.fuel.2025.134736\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>CO<sub>2</sub> transformation poses a key challenge due to its thermodynamic stability and chemical inertness. Low-temperature methanation offers near-equilibrium CO<sub>2</sub> conversion to methane at ambient pressure, a promising strategy for carbon neutrality. However, effectively catalyzing CO<sub>2</sub> activation at low temperatures presents a key challenge due to the kinetic constraints of the hydrogenation intermediates. This study investigates the influence of high pore volume and Ce loading on the catalytic performance of Ni/Al<sub>2</sub>O<sub>3</sub> spheres prepared by the wet impregnation method. Initially, high pore volume Al<sub>2</sub>O<sub>3</sub> spheres were synthesized in microchannels, and their catalytic performance was compared with that of two commercially available Al<sub>2</sub>O<sub>3</sub> supports. Ni/Al<sub>2</sub>O<sub>3</sub> spheres with high specific surface area (267 m<sup>2</sup>/g) and pore volume (0.97 mL/g) showed 73 % CO<sub>2</sub> conversion compared to 59 % and 55 % on commercial-1 and commercial-2 supports at 325 °C and a GHSV of 16000 mL⋅g<sub>cat</sub><sup>−1</sup>⋅h<sup>−1</sup>. Then, various amounts of Ce were doped on Ni/Al<sub>2</sub>O<sub>3</sub> spheres to further enhance CO<sub>2</sub> methanation performance, and results revealed NiCe<sub>7.5</sub>/Al<sub>2</sub>O<sub>3</sub> possessed 86 % CO<sub>2</sub> conversion, 99.9 % CH<sub>4</sub> selectivity and a methane STY of 122 mmol. gcat<sup>−1</sup>.h<sup>−1</sup> at 250 °C. Advanced <em>in-situ</em> characterization approaches, featuring <em>in-situ</em> Raman, quasi <em>in-situ</em> XPS, and HAADF-STEM revealed that the incorporation of Ce promotes Ni dispersion, decreases particle size, and promotes abundant oxygen vacancies resulting in efficient CO<sub>2</sub> methanation. <em>In-situ</em> DRIFTS and DFT studies revealed that the NiCe<sub>7.5</sub>/Al<sub>2</sub>O<sub>3</sub> follows the CO<sub>2</sub> hydrogenation formate pathway to produce CH<sub>4</sub>. This efficient low-temperature CO<sub>2</sub> methanation demonstrates the superior catalytic performance is associated with higher pore structure and Ce doping on Ni/Al<sub>2</sub>O<sub>3</sub> spheres.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"390 \",\"pages\":\"Article 134736\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236125004600\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236125004600","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ceria-modified high pore volume Ni/Al2O3 spheres for enhanced low-temperature CO2 methanation
CO2 transformation poses a key challenge due to its thermodynamic stability and chemical inertness. Low-temperature methanation offers near-equilibrium CO2 conversion to methane at ambient pressure, a promising strategy for carbon neutrality. However, effectively catalyzing CO2 activation at low temperatures presents a key challenge due to the kinetic constraints of the hydrogenation intermediates. This study investigates the influence of high pore volume and Ce loading on the catalytic performance of Ni/Al2O3 spheres prepared by the wet impregnation method. Initially, high pore volume Al2O3 spheres were synthesized in microchannels, and their catalytic performance was compared with that of two commercially available Al2O3 supports. Ni/Al2O3 spheres with high specific surface area (267 m2/g) and pore volume (0.97 mL/g) showed 73 % CO2 conversion compared to 59 % and 55 % on commercial-1 and commercial-2 supports at 325 °C and a GHSV of 16000 mL⋅gcat−1⋅h−1. Then, various amounts of Ce were doped on Ni/Al2O3 spheres to further enhance CO2 methanation performance, and results revealed NiCe7.5/Al2O3 possessed 86 % CO2 conversion, 99.9 % CH4 selectivity and a methane STY of 122 mmol. gcat−1.h−1 at 250 °C. Advanced in-situ characterization approaches, featuring in-situ Raman, quasi in-situ XPS, and HAADF-STEM revealed that the incorporation of Ce promotes Ni dispersion, decreases particle size, and promotes abundant oxygen vacancies resulting in efficient CO2 methanation. In-situ DRIFTS and DFT studies revealed that the NiCe7.5/Al2O3 follows the CO2 hydrogenation formate pathway to produce CH4. This efficient low-temperature CO2 methanation demonstrates the superior catalytic performance is associated with higher pore structure and Ce doping on Ni/Al2O3 spheres.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuel
Fuel 工程技术-工程:化工
CiteScore
12.80
自引率
20.30%
发文量
3506
审稿时长
64 days
期刊介绍: The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.
期刊最新文献
Formation mechanism of liquid hydrocarbon products of type III kerogen: Insights from temperature-based semi-open pyrolysis Effects of wedge geometric parameters on flow characteristics of oblique detonation waves in a non-premixed mixture On the thermal degradation of palm frond and PLA 3251D biopolymer: TGA/FTIR experimentation, thermo-kinetics, and machine learning CDNN analysis Upgrading biogas to metgas by bi-reforming over Y2O3 modified Ni/h-BN nanocatalysts Ni- and Co-based catalysts via alloying Ni and Co with Sn species for selective conversion of vanillin through tailoring hydrogenation and deoxygenation activity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1