{"title":"基于具有 MOCVD 生长 P+ GaAs 阳极接触层的半绝缘 GaAs 的 pi-i-n 粒子探测器的特性分析","authors":"O. Sabag;E. Evenstein;G. Atar;M. Bin-Nun;M. Alefe;D. Memram;R. Tamari;S. Primo;S. Zoran;L. Hovalshvili;D. Cohen-Elias;T. Lewi","doi":"10.1109/TNS.2025.3528622","DOIUrl":null,"url":null,"abstract":"Semi-insulating (SI) gallium arsenide (GaAs) alpha detectors with anode GaAs P+ contact layer were fabricated and characterized. The contact layer growth was carried out by metal-organic chemical vapor deposition (MOCVD) and the detector performances were compared to the performances of a front Schottky contact detector. The front-side Schottky contact suffers from electron injection into the GaAs substrate. This injection is eliminated by using a P+ anode blocking layer with an ohmic contact, resulting in a reduction of leakage current at reverse bias values of up to 70 V. For example, at 30 V, the leakage currents were 50 and 150 nA/cm2 for the ohmic and the Schottky anode detectors, respectively. For both detectors, the charge collection efficiency (CCE) was increased by a factor of ~2 after grinding the substrates from 650- to 310-<inline-formula> <tex-math>$\\mu $ </tex-math></inline-formula>m thickness, with no leakage current degradation. In addition, rapid thermal process (RTP) annealing of the bottom N contact reduced the leakage current only for the Schottky detector, while improving the forward bias characteristics for both ohmic and Schottky detectors, as expected.","PeriodicalId":13406,"journal":{"name":"IEEE Transactions on Nuclear Science","volume":"72 2","pages":"184-188"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterization of p-i-n Particle Detectors Based on Semi-Insulating GaAs With an MOCVD-Grown P+ GaAs Anode Contact Layer\",\"authors\":\"O. Sabag;E. Evenstein;G. Atar;M. Bin-Nun;M. Alefe;D. Memram;R. Tamari;S. Primo;S. Zoran;L. Hovalshvili;D. Cohen-Elias;T. Lewi\",\"doi\":\"10.1109/TNS.2025.3528622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semi-insulating (SI) gallium arsenide (GaAs) alpha detectors with anode GaAs P+ contact layer were fabricated and characterized. The contact layer growth was carried out by metal-organic chemical vapor deposition (MOCVD) and the detector performances were compared to the performances of a front Schottky contact detector. The front-side Schottky contact suffers from electron injection into the GaAs substrate. This injection is eliminated by using a P+ anode blocking layer with an ohmic contact, resulting in a reduction of leakage current at reverse bias values of up to 70 V. For example, at 30 V, the leakage currents were 50 and 150 nA/cm2 for the ohmic and the Schottky anode detectors, respectively. For both detectors, the charge collection efficiency (CCE) was increased by a factor of ~2 after grinding the substrates from 650- to 310-<inline-formula> <tex-math>$\\\\mu $ </tex-math></inline-formula>m thickness, with no leakage current degradation. In addition, rapid thermal process (RTP) annealing of the bottom N contact reduced the leakage current only for the Schottky detector, while improving the forward bias characteristics for both ohmic and Schottky detectors, as expected.\",\"PeriodicalId\":13406,\"journal\":{\"name\":\"IEEE Transactions on Nuclear Science\",\"volume\":\"72 2\",\"pages\":\"184-188\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-01-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Nuclear Science\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10839430/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Nuclear Science","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10839430/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Characterization of p-i-n Particle Detectors Based on Semi-Insulating GaAs With an MOCVD-Grown P+ GaAs Anode Contact Layer
Semi-insulating (SI) gallium arsenide (GaAs) alpha detectors with anode GaAs P+ contact layer were fabricated and characterized. The contact layer growth was carried out by metal-organic chemical vapor deposition (MOCVD) and the detector performances were compared to the performances of a front Schottky contact detector. The front-side Schottky contact suffers from electron injection into the GaAs substrate. This injection is eliminated by using a P+ anode blocking layer with an ohmic contact, resulting in a reduction of leakage current at reverse bias values of up to 70 V. For example, at 30 V, the leakage currents were 50 and 150 nA/cm2 for the ohmic and the Schottky anode detectors, respectively. For both detectors, the charge collection efficiency (CCE) was increased by a factor of ~2 after grinding the substrates from 650- to 310-$\mu $ m thickness, with no leakage current degradation. In addition, rapid thermal process (RTP) annealing of the bottom N contact reduced the leakage current only for the Schottky detector, while improving the forward bias characteristics for both ohmic and Schottky detectors, as expected.
期刊介绍:
The IEEE Transactions on Nuclear Science is a publication of the IEEE Nuclear and Plasma Sciences Society. It is viewed as the primary source of technical information in many of the areas it covers. As judged by JCR impact factor, TNS consistently ranks in the top five journals in the category of Nuclear Science & Technology. It has one of the higher immediacy indices, indicating that the information it publishes is viewed as timely, and has a relatively long citation half-life, indicating that the published information also is viewed as valuable for a number of years.
The IEEE Transactions on Nuclear Science is published bimonthly. Its scope includes all aspects of the theory and application of nuclear science and engineering. It focuses on instrumentation for the detection and measurement of ionizing radiation; particle accelerators and their controls; nuclear medicine and its application; effects of radiation on materials, components, and systems; reactor instrumentation and controls; and measurement of radiation in space.