含有α-生育酚的多芯二氧化硅微胶囊在消费品中的潜在应用

IF 5.2 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Advances Pub Date : 2025-01-23 DOI:10.1039/D4MA00981A
Mohammed Al-Sharabi, Benjamin T. Lobel, Daniele Baiocco, Olivier J. Cayre, Zhibing Zhang and Alexander F. Routh
{"title":"含有α-生育酚的多芯二氧化硅微胶囊在消费品中的潜在应用","authors":"Mohammed Al-Sharabi, Benjamin T. Lobel, Daniele Baiocco, Olivier J. Cayre, Zhibing Zhang and Alexander F. Routh","doi":"10.1039/D4MA00981A","DOIUrl":null,"url":null,"abstract":"<p >Microencapsulation is an advanced technique for protecting and enhancing the processing, delivery and performance of sensitive active ingredients, such as lipid-soluble vitamins. The fabrication of microcapsules containing such materials in an efficient, cost-effective and environmentally-friendly manner remains an ongoing challenge. Multicore silica microcapsules containing α-tocopherol in their cores were fabricated through salt-induced destabilisation and subsequent agglomeration of silica nanoparticles in an oil-in-water-in-oil double emulsion template at room temperature. The primary emulsion was prepared using three different concentrations (5, 10 and 15 wt%) of the internal oil phase, <em>i.e.</em> a mixture of α-tocopherol and sunflower oil. The external oil phase for the secondary emulsion consisted of different concentrations of Span 80 (0, 0.5 and 1 wt%) in sunflower oil. The capsule core size does not change during storage, confirming the stability of cores within the microcapsules. Mechanical testing provides that the microcapsules containing the lowest concentration of internal oil (5 wt%) have the highest rupture force and nominal rupture stress due to the higher silica content of these microcapsules. The incorporation of Span 80 does not significantly change the adhesion of microcapsules to a Lorica Soft leather substrate, mimicking human skin. The microcapsules are designed to release their contents upon mechanical rupture induced by rubbing against skin. This work shows the potential of such microcapsules to be applied in a range of consumer products, such as cosmetics.</p>","PeriodicalId":18242,"journal":{"name":"Materials Advances","volume":" 4","pages":" 1468-1477"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00981a?page=search","citationCount":"0","resultStr":"{\"title\":\"Multicore silica microcapsules containing α-tocopherol for potential consumer product applications\",\"authors\":\"Mohammed Al-Sharabi, Benjamin T. Lobel, Daniele Baiocco, Olivier J. Cayre, Zhibing Zhang and Alexander F. Routh\",\"doi\":\"10.1039/D4MA00981A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Microencapsulation is an advanced technique for protecting and enhancing the processing, delivery and performance of sensitive active ingredients, such as lipid-soluble vitamins. The fabrication of microcapsules containing such materials in an efficient, cost-effective and environmentally-friendly manner remains an ongoing challenge. Multicore silica microcapsules containing α-tocopherol in their cores were fabricated through salt-induced destabilisation and subsequent agglomeration of silica nanoparticles in an oil-in-water-in-oil double emulsion template at room temperature. The primary emulsion was prepared using three different concentrations (5, 10 and 15 wt%) of the internal oil phase, <em>i.e.</em> a mixture of α-tocopherol and sunflower oil. The external oil phase for the secondary emulsion consisted of different concentrations of Span 80 (0, 0.5 and 1 wt%) in sunflower oil. The capsule core size does not change during storage, confirming the stability of cores within the microcapsules. Mechanical testing provides that the microcapsules containing the lowest concentration of internal oil (5 wt%) have the highest rupture force and nominal rupture stress due to the higher silica content of these microcapsules. The incorporation of Span 80 does not significantly change the adhesion of microcapsules to a Lorica Soft leather substrate, mimicking human skin. The microcapsules are designed to release their contents upon mechanical rupture induced by rubbing against skin. This work shows the potential of such microcapsules to be applied in a range of consumer products, such as cosmetics.</p>\",\"PeriodicalId\":18242,\"journal\":{\"name\":\"Materials Advances\",\"volume\":\" 4\",\"pages\":\" 1468-1477\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2025-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ma/d4ma00981a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00981a\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Advances","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ma/d4ma00981a","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multicore silica microcapsules containing α-tocopherol for potential consumer product applications

Microencapsulation is an advanced technique for protecting and enhancing the processing, delivery and performance of sensitive active ingredients, such as lipid-soluble vitamins. The fabrication of microcapsules containing such materials in an efficient, cost-effective and environmentally-friendly manner remains an ongoing challenge. Multicore silica microcapsules containing α-tocopherol in their cores were fabricated through salt-induced destabilisation and subsequent agglomeration of silica nanoparticles in an oil-in-water-in-oil double emulsion template at room temperature. The primary emulsion was prepared using three different concentrations (5, 10 and 15 wt%) of the internal oil phase, i.e. a mixture of α-tocopherol and sunflower oil. The external oil phase for the secondary emulsion consisted of different concentrations of Span 80 (0, 0.5 and 1 wt%) in sunflower oil. The capsule core size does not change during storage, confirming the stability of cores within the microcapsules. Mechanical testing provides that the microcapsules containing the lowest concentration of internal oil (5 wt%) have the highest rupture force and nominal rupture stress due to the higher silica content of these microcapsules. The incorporation of Span 80 does not significantly change the adhesion of microcapsules to a Lorica Soft leather substrate, mimicking human skin. The microcapsules are designed to release their contents upon mechanical rupture induced by rubbing against skin. This work shows the potential of such microcapsules to be applied in a range of consumer products, such as cosmetics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Advances
Materials Advances MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
7.60
自引率
2.00%
发文量
665
审稿时长
5 weeks
期刊最新文献
Back cover Back cover Deciphering the electrochemical kinetics of sulfur vacancy-assisted nitrogen-doped NiCo2S4 combined with sulfur-doped g-C3N4 towards supercapacitor applications† Synthesis and preclinical evaluation of novel l-cystine-based polyamide nanocapsules loaded with a fixed-dose combination of thymoquinone and doxorubicin for targeted pulmonary anticancer drug delivery Exploring the effects of zirconium doping on barium titanate ceramics: structural, electrical, and optical properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1