Baoqiang Ma , Alessia De Biase , Jiapan Guo , Lisanne V. van Dijk , Johannes A. Langendijk , Stefan Both , Peter M.A. van Ooijen , Nanna M. Sijtsema
{"title":"The prognostic value of pathologic lymph node imaging using deep learning-based outcome prediction in oropharyngeal cancer patients","authors":"Baoqiang Ma , Alessia De Biase , Jiapan Guo , Lisanne V. van Dijk , Johannes A. Langendijk , Stefan Both , Peter M.A. van Ooijen , Nanna M. Sijtsema","doi":"10.1016/j.phro.2025.100733","DOIUrl":null,"url":null,"abstract":"<div><h3>Background and purpose</h3><div>Deep learning (DL) models can extract prognostic image features from pre-treatment PET/CT scans. The study objective was to explore the potential benefits of incorporating pathologic lymph node (PL) spatial information in addition to that of the primary tumor (PT) in DL-based models for predicting local control (LC), regional control (RC), distant-metastasis-free survival (DMFS), and overall survival (OS) in oropharyngeal cancer (OPC) patients.</div></div><div><h3>Materials and methods</h3><div>The study included 409 OPC patients treated with definitive (chemo)radiotherapy between 2010 and 2022. Patient data, including PET/CT scans, manually contoured PT (GTVp) and PL (GTVln) structures, clinical variables, and endpoints, were collected. Firstly, a DL-based method was employed to segment tumours in PET/CT, resulting in predicted probability maps for PT (TPMp) and PL (TPMln). Secondly, different combinations of CT, PET, manual contours and probability maps from 300 patients were used to train DL-based outcome prediction models for each endpoint through 5-fold cross validation. Model performance, assessed by concordance index (C-index), was evaluated using a test set of 100 patients.</div></div><div><h3>Results</h3><div>Including PL improved the C-index results for all endpoints except LC. For LC, comparable C-indices (around 0.66) were observed between models trained using only PT and those incorporating PL as additional structure. Models trained using PT and PL combined into a single structure achieved the highest C-index of 0.65 and 0.80 for RC and DMFS prediction, respectively. Models trained using these target structures as separate entities achieved the highest C-index of 0.70 for OS.</div></div><div><h3>Conclusion</h3><div>Incorporating lymph node spatial information improved the prediction performance for RC, DMFS, and OS.</div></div>","PeriodicalId":36850,"journal":{"name":"Physics and Imaging in Radiation Oncology","volume":"33 ","pages":"Article 100733"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Imaging in Radiation Oncology","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405631625000387","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
The prognostic value of pathologic lymph node imaging using deep learning-based outcome prediction in oropharyngeal cancer patients
Background and purpose
Deep learning (DL) models can extract prognostic image features from pre-treatment PET/CT scans. The study objective was to explore the potential benefits of incorporating pathologic lymph node (PL) spatial information in addition to that of the primary tumor (PT) in DL-based models for predicting local control (LC), regional control (RC), distant-metastasis-free survival (DMFS), and overall survival (OS) in oropharyngeal cancer (OPC) patients.
Materials and methods
The study included 409 OPC patients treated with definitive (chemo)radiotherapy between 2010 and 2022. Patient data, including PET/CT scans, manually contoured PT (GTVp) and PL (GTVln) structures, clinical variables, and endpoints, were collected. Firstly, a DL-based method was employed to segment tumours in PET/CT, resulting in predicted probability maps for PT (TPMp) and PL (TPMln). Secondly, different combinations of CT, PET, manual contours and probability maps from 300 patients were used to train DL-based outcome prediction models for each endpoint through 5-fold cross validation. Model performance, assessed by concordance index (C-index), was evaluated using a test set of 100 patients.
Results
Including PL improved the C-index results for all endpoints except LC. For LC, comparable C-indices (around 0.66) were observed between models trained using only PT and those incorporating PL as additional structure. Models trained using PT and PL combined into a single structure achieved the highest C-index of 0.65 and 0.80 for RC and DMFS prediction, respectively. Models trained using these target structures as separate entities achieved the highest C-index of 0.70 for OS.
Conclusion
Incorporating lymph node spatial information improved the prediction performance for RC, DMFS, and OS.