基于遥感光谱库和 WorldView-3 数据的伟晶岩堤识别:新疆阿尔泰中部地区案例研究

IF 3.2 2区 地球科学 Q1 GEOLOGY Ore Geology Reviews Pub Date : 2025-02-18 DOI:10.1016/j.oregeorev.2025.106496
Chenmeng Li , Huadong Ma , Chuan Chen , Ping Li , Fang Xia , Lingling Gao , Wei Wang , Xiaofei Du , Yongqi Hao , Shunda Li
{"title":"基于遥感光谱库和 WorldView-3 数据的伟晶岩堤识别:新疆阿尔泰中部地区案例研究","authors":"Chenmeng Li ,&nbsp;Huadong Ma ,&nbsp;Chuan Chen ,&nbsp;Ping Li ,&nbsp;Fang Xia ,&nbsp;Lingling Gao ,&nbsp;Wei Wang ,&nbsp;Xiaofei Du ,&nbsp;Yongqi Hao ,&nbsp;Shunda Li","doi":"10.1016/j.oregeorev.2025.106496","DOIUrl":null,"url":null,"abstract":"<div><div>The central Altyn region in Xinjiang is a prospective region for the mineralization of rare metals, such as lithium and beryllium, and is the target area for the exploration of rare metal deposits of the granitic pegmatite type in this study. However, harsh natural conditions complicate the effective identification of pegmatite dikes via conventional techniques, thereby limiting exploration. The narrowness of pegmatite dikes and aeolian sand cover presents challenge, yet remote sensing technology holds significant potential in this area. High spatial resolution data are essential, and a systematic remote sensing identification method has yet to be established. In this study, we established a spectral library of rocks and minerals in the research area and applied image enhancement techniques such as PCA, ICA, MNF, and band ratios to WorldView-3 imagery. By optimizing the display with RGB combinations, 764 pegmatite dikes were successfully identified, and five pegmatite dike group areas were delineated. A “dike-centered limited buffer” method for identifying mineralized pegmatite dikes was proposed. Using measured spectra combined with the spectral angle mapper (SAM) method, lithium-beryllium-bearing dikes were differentiated from non-lithium-beryllium-bearing dikes, and ultimately, 58 lithium-beryllium-bearing pegmatite dikes were identified. Field validation in Areas III, IV, and V indicates that the identification results align well with on-site observations. In this study, we significantly improved the accuracy of pegmatite dike identification in the central Altyn region, providing an effective remote sensing technique and theoretical support for rare metal exploration in this area.</div></div>","PeriodicalId":19644,"journal":{"name":"Ore Geology Reviews","volume":"178 ","pages":"Article 106496"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of pegmatite dikes based on remote sensing spectral library and WorldView-3 Data: A Case study in the central Altyn region of Xinjiang\",\"authors\":\"Chenmeng Li ,&nbsp;Huadong Ma ,&nbsp;Chuan Chen ,&nbsp;Ping Li ,&nbsp;Fang Xia ,&nbsp;Lingling Gao ,&nbsp;Wei Wang ,&nbsp;Xiaofei Du ,&nbsp;Yongqi Hao ,&nbsp;Shunda Li\",\"doi\":\"10.1016/j.oregeorev.2025.106496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The central Altyn region in Xinjiang is a prospective region for the mineralization of rare metals, such as lithium and beryllium, and is the target area for the exploration of rare metal deposits of the granitic pegmatite type in this study. However, harsh natural conditions complicate the effective identification of pegmatite dikes via conventional techniques, thereby limiting exploration. The narrowness of pegmatite dikes and aeolian sand cover presents challenge, yet remote sensing technology holds significant potential in this area. High spatial resolution data are essential, and a systematic remote sensing identification method has yet to be established. In this study, we established a spectral library of rocks and minerals in the research area and applied image enhancement techniques such as PCA, ICA, MNF, and band ratios to WorldView-3 imagery. By optimizing the display with RGB combinations, 764 pegmatite dikes were successfully identified, and five pegmatite dike group areas were delineated. A “dike-centered limited buffer” method for identifying mineralized pegmatite dikes was proposed. Using measured spectra combined with the spectral angle mapper (SAM) method, lithium-beryllium-bearing dikes were differentiated from non-lithium-beryllium-bearing dikes, and ultimately, 58 lithium-beryllium-bearing pegmatite dikes were identified. Field validation in Areas III, IV, and V indicates that the identification results align well with on-site observations. In this study, we significantly improved the accuracy of pegmatite dike identification in the central Altyn region, providing an effective remote sensing technique and theoretical support for rare metal exploration in this area.</div></div>\",\"PeriodicalId\":19644,\"journal\":{\"name\":\"Ore Geology Reviews\",\"volume\":\"178 \",\"pages\":\"Article 106496\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ore Geology Reviews\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0169136825000563\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ore Geology Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169136825000563","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identification of pegmatite dikes based on remote sensing spectral library and WorldView-3 Data: A Case study in the central Altyn region of Xinjiang
The central Altyn region in Xinjiang is a prospective region for the mineralization of rare metals, such as lithium and beryllium, and is the target area for the exploration of rare metal deposits of the granitic pegmatite type in this study. However, harsh natural conditions complicate the effective identification of pegmatite dikes via conventional techniques, thereby limiting exploration. The narrowness of pegmatite dikes and aeolian sand cover presents challenge, yet remote sensing technology holds significant potential in this area. High spatial resolution data are essential, and a systematic remote sensing identification method has yet to be established. In this study, we established a spectral library of rocks and minerals in the research area and applied image enhancement techniques such as PCA, ICA, MNF, and band ratios to WorldView-3 imagery. By optimizing the display with RGB combinations, 764 pegmatite dikes were successfully identified, and five pegmatite dike group areas were delineated. A “dike-centered limited buffer” method for identifying mineralized pegmatite dikes was proposed. Using measured spectra combined with the spectral angle mapper (SAM) method, lithium-beryllium-bearing dikes were differentiated from non-lithium-beryllium-bearing dikes, and ultimately, 58 lithium-beryllium-bearing pegmatite dikes were identified. Field validation in Areas III, IV, and V indicates that the identification results align well with on-site observations. In this study, we significantly improved the accuracy of pegmatite dike identification in the central Altyn region, providing an effective remote sensing technique and theoretical support for rare metal exploration in this area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Ore Geology Reviews
Ore Geology Reviews 地学-地质学
CiteScore
6.50
自引率
27.30%
发文量
546
审稿时长
22.9 weeks
期刊介绍: Ore Geology Reviews aims to familiarize all earth scientists with recent advances in a number of interconnected disciplines related to the study of, and search for, ore deposits. The reviews range from brief to longer contributions, but the journal preferentially publishes manuscripts that fill the niche between the commonly shorter journal articles and the comprehensive book coverages, and thus has a special appeal to many authors and readers.
期刊最新文献
Identification of pegmatite dikes based on remote sensing spectral library and WorldView-3 Data: A Case study in the central Altyn region of Xinjiang Major and trace element geochemistry of garnets from the Geumseong Mo skarn deposit, South Korea: Genesis and exploration implications Petrological and geochemical studies of the Xiamaidi mafic–ultramafic intrusion in the Baoshan block, with implications for Ni exploration Geology and genesis of gold deposits in the daduhe belt: A Case study of the Lianhua gold deposit on the Western margin of the Yangtze Craton, China Metallogeny of the Jinming gold deposit in northeast Hunan, Jiangnan Orogen: Constraints from in situ sericite Rb-Sr dating, pyrite trace elements and S isotope geochemistry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1