IF 12.1 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Radiology Pub Date : 2025-02-01 DOI:10.1148/radiol.241613
Tugba Akinci D'Antonoli, Lucas K Berger, Ashraya K Indrakanti, Nathan Vishwanathan, Jakob Weiss, Matthias Jung, Zeynep Berkarda, Alexander Rau, Marco Reisert, Thomas Küstner, Alexandra Walter, Elmar M Merkle, Daniel T Boll, Hanns-Christian Breit, Andrew Phillip Nicoli, Martin Segeroth, Joshy Cyriac, Shan Yang, Jakob Wasserthal
{"title":"TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI.","authors":"Tugba Akinci D'Antonoli, Lucas K Berger, Ashraya K Indrakanti, Nathan Vishwanathan, Jakob Weiss, Matthias Jung, Zeynep Berkarda, Alexander Rau, Marco Reisert, Thomas Küstner, Alexandra Walter, Elmar M Merkle, Daniel T Boll, Hanns-Christian Breit, Andrew Phillip Nicoli, Martin Segeroth, Joshy Cyriac, Shan Yang, Jakob Wasserthal","doi":"10.1148/radiol.241613","DOIUrl":null,"url":null,"abstract":"<p><p>Background Since the introduction of TotalSegmentator CT, there has been demand for a similar robust automated MRI segmentation tool that can be applied across all MRI sequences and anatomic structures. Purpose To develop and evaluate an automated MRI segmentation model for robust segmentation of major anatomic structures independent of MRI sequence. Materials and Methods In this retrospective study, an nnU-Net model (TotalSegmentator MRI) was trained on MRI and CT scans to segment 80 anatomic structures relevant for use cases such as organ volumetry, disease characterization, surgical planning, and opportunistic screening. Images were randomly sampled from routine clinical studies to represent real-world examples. Dice scores were calculated between the predicted segmentations and expert radiologist segmentations to evaluate model performance on an internal test set and two external test sets and against two publicly available models and TotalSegmentator CT. The Wilcoxon signed rank test was used to compare model performance. The proposed model was applied to a separate internal dataset containing abdominal MRI scans to investigate age-dependent volume changes. Results A total of 1143 scans (616 MRI, 527 CT; median patient age, 61 years [IQR, 50-72 years]) were split into a training set (<i>n</i> = 1088; CT and MRI) and an internal test set (<i>n</i> = 55; MRI only). The two external test sets (AMOS and CHAOS) contained 20 MRI scans each, and the aging-study dataset contained 8672 abdominal MRI scans (median patient age, 59 years [IQR, 45-70 years]). The proposed model had a Dice score of 0.839 for the 80 anatomic structures in the internal test set and outperformed two other models (Dice score of 0.862 vs 0.759 for 40 anatomic structures and 0.838 vs 0.560 for 13 anatomic structures; <i>P</i> < .001 for both). On the TotalSegmentator CT test set (89 CT scans), the performance of the proposed model almost matched that of TotalSegmentator CT (Dice score, 0.966 vs 0.970; <i>P</i> < .001). The aging study demonstrated a strong correlation between age and organ volume (eg, age and liver volume: ρ = -0.096; <i>P</i> < .0001). Conclusion The proposed open-source, easy-to-use model allows for automatic, robust segmentation of 80 structures, extending the capabilities of TotalSegmentator to MRI scans from any MRI sequence. The ready-to-use online tool is available at <i>https://totalsegmentator.com</i>; the model, at <i>https://github.com/wasserth/TotalSegmentator</i>; and the dataset, at <i>http://zenodo.org/records/14710732</i>. © RSNA, 2025 <i>Supplemental material is available for this article.</i> See also the editorial by Kitamura in this issue.</p>","PeriodicalId":20896,"journal":{"name":"Radiology","volume":"314 2","pages":"e241613"},"PeriodicalIF":12.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1148/radiol.241613","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

背景 自从 TotalSegmentator CT 推出以来,人们一直需要一种类似的可应用于所有 MRI 序列和解剖结构的强大自动 MRI 分割工具。目的 开发并评估一种自动磁共振成像分割模型,用于不受磁共振成像序列影响的主要解剖结构的稳健分割。材料和方法 在这项回顾性研究中,对一个 nnU-Net 模型(TotalSegmentator MRI)进行了 MRI 和 CT 扫描训练,以分割与器官容积测量、疾病特征描述、手术规划和机会性筛查等用例相关的 80 个解剖结构。图像是从常规临床研究中随机抽取的,以代表真实世界的实例。计算预测分割与放射科专家分割之间的骰子分数,以评估模型在一个内部测试集和两个外部测试集上的性能,并与两个公开可用的模型和 TotalSegmentator CT 进行比较。采用 Wilcoxon 符号秩检验来比较模型性能。提出的模型还被应用于一个单独的内部数据集,该数据集包含腹部核磁共振成像扫描,用于研究随年龄变化的体积变化。结果 总共 1143 次扫描(616 次 MRI 扫描,527 次 CT 扫描;患者年龄中位数为 61 岁 [IQR,50-72 岁])被分成一个训练集(n = 1088;CT 和 MRI)和一个内部测试集(n = 55;仅 MRI)。两个外部测试集(AMOS 和 CHAOS)各包含 20 个核磁共振扫描,老龄化研究数据集包含 8672 个腹部核磁共振扫描(患者年龄中位数为 59 岁 [IQR,45-70 岁])。在内部测试集的 80 个解剖结构中,建议模型的 Dice 得分为 0.839,优于其他两个模型(40 个解剖结构的 Dice 得分为 0.862 vs 0.759,13 个解剖结构的 Dice 得分为 0.838 vs 0.560;两者的 P 均小于 0.001)。在 TotalSegmentator CT 测试集(89 个 CT 扫描)上,拟议模型的性能几乎与 TotalSegmentator CT 相当(Dice 分数,0.966 vs 0.970;P < .001)。老化研究表明,年龄与器官体积之间存在很强的相关性(例如,年龄与肝脏体积:ρ = -0.096; P < .0001)。结论 拟议的开源、易用模型可对 80 个结构进行自动、稳健的分割,将 TotalSegmentator 的功能扩展到任何 MRI 序列的 MRI 扫描。随时可用的在线工具见 https://totalsegmentator.com;模型见 https://github.com/wasserth/TotalSegmentator;数据集见 http://zenodo.org/records/14710732。© RSNA, 2025 本文有补充材料。另请参阅 Kitamura 在本期发表的社论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TotalSegmentator MRI: Robust Sequence-independent Segmentation of Multiple Anatomic Structures in MRI.

Background Since the introduction of TotalSegmentator CT, there has been demand for a similar robust automated MRI segmentation tool that can be applied across all MRI sequences and anatomic structures. Purpose To develop and evaluate an automated MRI segmentation model for robust segmentation of major anatomic structures independent of MRI sequence. Materials and Methods In this retrospective study, an nnU-Net model (TotalSegmentator MRI) was trained on MRI and CT scans to segment 80 anatomic structures relevant for use cases such as organ volumetry, disease characterization, surgical planning, and opportunistic screening. Images were randomly sampled from routine clinical studies to represent real-world examples. Dice scores were calculated between the predicted segmentations and expert radiologist segmentations to evaluate model performance on an internal test set and two external test sets and against two publicly available models and TotalSegmentator CT. The Wilcoxon signed rank test was used to compare model performance. The proposed model was applied to a separate internal dataset containing abdominal MRI scans to investigate age-dependent volume changes. Results A total of 1143 scans (616 MRI, 527 CT; median patient age, 61 years [IQR, 50-72 years]) were split into a training set (n = 1088; CT and MRI) and an internal test set (n = 55; MRI only). The two external test sets (AMOS and CHAOS) contained 20 MRI scans each, and the aging-study dataset contained 8672 abdominal MRI scans (median patient age, 59 years [IQR, 45-70 years]). The proposed model had a Dice score of 0.839 for the 80 anatomic structures in the internal test set and outperformed two other models (Dice score of 0.862 vs 0.759 for 40 anatomic structures and 0.838 vs 0.560 for 13 anatomic structures; P < .001 for both). On the TotalSegmentator CT test set (89 CT scans), the performance of the proposed model almost matched that of TotalSegmentator CT (Dice score, 0.966 vs 0.970; P < .001). The aging study demonstrated a strong correlation between age and organ volume (eg, age and liver volume: ρ = -0.096; P < .0001). Conclusion The proposed open-source, easy-to-use model allows for automatic, robust segmentation of 80 structures, extending the capabilities of TotalSegmentator to MRI scans from any MRI sequence. The ready-to-use online tool is available at https://totalsegmentator.com; the model, at https://github.com/wasserth/TotalSegmentator; and the dataset, at http://zenodo.org/records/14710732. © RSNA, 2025 Supplemental material is available for this article. See also the editorial by Kitamura in this issue.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Radiology
Radiology 医学-核医学
CiteScore
35.20
自引率
3.00%
发文量
596
审稿时长
3.6 months
期刊介绍: Published regularly since 1923 by the Radiological Society of North America (RSNA), Radiology has long been recognized as the authoritative reference for the most current, clinically relevant and highest quality research in the field of radiology. Each month the journal publishes approximately 240 pages of peer-reviewed original research, authoritative reviews, well-balanced commentary on significant articles, and expert opinion on new techniques and technologies. Radiology publishes cutting edge and impactful imaging research articles in radiology and medical imaging in order to help improve human health.
期刊最新文献
A Leadership Primer. COVID-19 Infection and Coronary Plaque Progression: An Early Warning of a Potential Public Health Crisis. Advancing Care: Managing Small Late-Recurrence Hepatocellular Carcinoma with Image-guided Therapy. AI-generated Clinical Histories for Radiology Reports: Closing the Information Gap. CT Honeycombing and Traction Bronchiectasis Extent Independently Predict Survival across Fibrotic Interstitial Lung Disease Subtypes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1