Nathaniel Rowthorn-Apel, Naveen Vridhachalam, Kip M Connor, Gracia M Bonilla, Ruslan Sadreyev, Charandeep Singh, Gopalan Gnanaguru
{"title":"小胶质细胞耗竭会降低 Müller 细胞成熟度和视网膜内层血管密度。","authors":"Nathaniel Rowthorn-Apel, Naveen Vridhachalam, Kip M Connor, Gracia M Bonilla, Ruslan Sadreyev, Charandeep Singh, Gopalan Gnanaguru","doi":"10.1186/s12964-025-02083-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The neuroretinal vascular system is comprised of three interconnected layers. The initial superficial vascular plexus formation is guided by astrocytes around birth in mice. The formation of the deep and intermediate vascular plexuses occurs in the second postnatal week and is driven by Müller-cell-derived angiogenic signaling. Previously, we reported that microglia play an important role in regulating astrocyte density during superficial vascular plexus formation. Here, we investigated the role of microglia in regulating Müller-cell-dependent inner retinal vascular development.</p><p><strong>Methodology: </strong>In this study, we depleted microglia during retinal development using Csf1R antagonist (PLX5622). We characterized the developmental progression of inner retinal vascular growth, effect of microglial depletion on inner retinal vascular growth and Müller cell marker expressions by immunostaining. Differential expressions of genes in the control and microglia depleted groups were analyzed by mRNA-seq and qPCR. Unpaired t-test was performed to determine the statistical differences between groups.</p><p><strong>Results: </strong>This study show that microglia interact with Müller cells and the growing inner retinal vasculature. Depletion of microglia resulted in reduced inner retinal vascular layers densities and decreased Vegfa isoforms transcript levels. RNA-seq analysis further revealed that microglial depletion significantly reduced specific Müller cell maturation markers including glutamine synthetase, responsible for glutamine biosynthesis, necessary for angiogenesis.</p><p><strong>Conclusions: </strong>Our study reveals an important role for microglia in facilitating inner retinal angiogenesis and Müller cell maturation.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"23 1","pages":"90"},"PeriodicalIF":8.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831819/pdf/","citationCount":"0","resultStr":"{\"title\":\"Microglial depletion decreases Müller cell maturation and inner retinal vascular density.\",\"authors\":\"Nathaniel Rowthorn-Apel, Naveen Vridhachalam, Kip M Connor, Gracia M Bonilla, Ruslan Sadreyev, Charandeep Singh, Gopalan Gnanaguru\",\"doi\":\"10.1186/s12964-025-02083-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The neuroretinal vascular system is comprised of three interconnected layers. The initial superficial vascular plexus formation is guided by astrocytes around birth in mice. The formation of the deep and intermediate vascular plexuses occurs in the second postnatal week and is driven by Müller-cell-derived angiogenic signaling. Previously, we reported that microglia play an important role in regulating astrocyte density during superficial vascular plexus formation. Here, we investigated the role of microglia in regulating Müller-cell-dependent inner retinal vascular development.</p><p><strong>Methodology: </strong>In this study, we depleted microglia during retinal development using Csf1R antagonist (PLX5622). We characterized the developmental progression of inner retinal vascular growth, effect of microglial depletion on inner retinal vascular growth and Müller cell marker expressions by immunostaining. Differential expressions of genes in the control and microglia depleted groups were analyzed by mRNA-seq and qPCR. Unpaired t-test was performed to determine the statistical differences between groups.</p><p><strong>Results: </strong>This study show that microglia interact with Müller cells and the growing inner retinal vasculature. Depletion of microglia resulted in reduced inner retinal vascular layers densities and decreased Vegfa isoforms transcript levels. RNA-seq analysis further revealed that microglial depletion significantly reduced specific Müller cell maturation markers including glutamine synthetase, responsible for glutamine biosynthesis, necessary for angiogenesis.</p><p><strong>Conclusions: </strong>Our study reveals an important role for microglia in facilitating inner retinal angiogenesis and Müller cell maturation.</p>\",\"PeriodicalId\":55268,\"journal\":{\"name\":\"Cell Communication and Signaling\",\"volume\":\"23 1\",\"pages\":\"90\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11831819/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Communication and Signaling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12964-025-02083-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Communication and Signaling","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12964-025-02083-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Background: The neuroretinal vascular system is comprised of three interconnected layers. The initial superficial vascular plexus formation is guided by astrocytes around birth in mice. The formation of the deep and intermediate vascular plexuses occurs in the second postnatal week and is driven by Müller-cell-derived angiogenic signaling. Previously, we reported that microglia play an important role in regulating astrocyte density during superficial vascular plexus formation. Here, we investigated the role of microglia in regulating Müller-cell-dependent inner retinal vascular development.
Methodology: In this study, we depleted microglia during retinal development using Csf1R antagonist (PLX5622). We characterized the developmental progression of inner retinal vascular growth, effect of microglial depletion on inner retinal vascular growth and Müller cell marker expressions by immunostaining. Differential expressions of genes in the control and microglia depleted groups were analyzed by mRNA-seq and qPCR. Unpaired t-test was performed to determine the statistical differences between groups.
Results: This study show that microglia interact with Müller cells and the growing inner retinal vasculature. Depletion of microglia resulted in reduced inner retinal vascular layers densities and decreased Vegfa isoforms transcript levels. RNA-seq analysis further revealed that microglial depletion significantly reduced specific Müller cell maturation markers including glutamine synthetase, responsible for glutamine biosynthesis, necessary for angiogenesis.
Conclusions: Our study reveals an important role for microglia in facilitating inner retinal angiogenesis and Müller cell maturation.
期刊介绍:
Cell Communication and Signaling (CCS) is a peer-reviewed, open-access scientific journal that focuses on cellular signaling pathways in both normal and pathological conditions. It publishes original research, reviews, and commentaries, welcoming studies that utilize molecular, morphological, biochemical, structural, and cell biology approaches. CCS also encourages interdisciplinary work and innovative models, including in silico, in vitro, and in vivo approaches, to facilitate investigations of cell signaling pathways, networks, and behavior.
Starting from January 2019, CCS is proud to announce its affiliation with the International Cell Death Society. The journal now encourages submissions covering all aspects of cell death, including apoptotic and non-apoptotic mechanisms, cell death in model systems, autophagy, clearance of dying cells, and the immunological and pathological consequences of dying cells in the tissue microenvironment.