脉冲高磁场对铝合金环残余应力的松弛:释放机制和性能评估

IF 6.7 2区 材料科学 Q1 ENGINEERING, INDUSTRIAL Journal of Materials Processing Technology Pub Date : 2025-02-17 DOI:10.1016/j.jmatprotec.2025.118778
Xiaoxiang Li , Xinyu Tang , Mengxian Li , Qiyuan Liu , Zhan Tuo , Quanliang Cao , Liang Li
{"title":"脉冲高磁场对铝合金环残余应力的松弛:释放机制和性能评估","authors":"Xiaoxiang Li ,&nbsp;Xinyu Tang ,&nbsp;Mengxian Li ,&nbsp;Qiyuan Liu ,&nbsp;Zhan Tuo ,&nbsp;Quanliang Cao ,&nbsp;Liang Li","doi":"10.1016/j.jmatprotec.2025.118778","DOIUrl":null,"url":null,"abstract":"<div><div>Residual stress is commonly present in metal components, potentially leading to structural instability and reduced strength. Thus, effective elimination of residual stress is essential in manufacturing large metal components. Traditional methods for stress relief include energy-based and mechanical approaches. However, energy-based methods are time-consuming and can weaken component strength, while mechanical methods may damage contact surfaces and cause localized stress concentrations. This paper introduces a novel technique for relaxing residual stress using pulsed high magnetic fields. The method applies a pulsed magnetic field to the ring’s inner surface, inducing a strong, non-contact Lorentz force that triggers slight plastic deformation, releasing residual stress in the elastic regions. Remarkably, the process takes only a few milliseconds. The study examines the mechanisms behind residual stress relief via pulsed magnetic fields and designs a device for stress elimination in large aluminum rings. Initial validation through bulging experiments on 6061 aluminum alloy rings (118 mm diameter) showed that the electromagnetic bulging process improves micro-deformation uniformity, promotes dislocation motion, generates sub-grain structures, and refines grains, thereby relieving stress. A large-scale electromagnetic bulging platform was then designed for 5A06 aluminum alloy rings (717 mm diameter). In-situ experiments demonstrated that a plastic deformation of 1 % eliminated up to 84.9 % of residual stress, indicating substantial stress relief. Finally, the study compared the effectiveness of stress elimination across different surfaces under various discharge bulging modes and analyzed the reasons for these differences. This method significantly enhances the efficiency and effectiveness of residual stress elimination in large aluminum alloy rings.</div></div>","PeriodicalId":367,"journal":{"name":"Journal of Materials Processing Technology","volume":"338 ","pages":"Article 118778"},"PeriodicalIF":6.7000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Relaxation of residual stress in aluminum alloy rings by pulsed high magnetic field: Relieving mechanisms and performance evaluation\",\"authors\":\"Xiaoxiang Li ,&nbsp;Xinyu Tang ,&nbsp;Mengxian Li ,&nbsp;Qiyuan Liu ,&nbsp;Zhan Tuo ,&nbsp;Quanliang Cao ,&nbsp;Liang Li\",\"doi\":\"10.1016/j.jmatprotec.2025.118778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Residual stress is commonly present in metal components, potentially leading to structural instability and reduced strength. Thus, effective elimination of residual stress is essential in manufacturing large metal components. Traditional methods for stress relief include energy-based and mechanical approaches. However, energy-based methods are time-consuming and can weaken component strength, while mechanical methods may damage contact surfaces and cause localized stress concentrations. This paper introduces a novel technique for relaxing residual stress using pulsed high magnetic fields. The method applies a pulsed magnetic field to the ring’s inner surface, inducing a strong, non-contact Lorentz force that triggers slight plastic deformation, releasing residual stress in the elastic regions. Remarkably, the process takes only a few milliseconds. The study examines the mechanisms behind residual stress relief via pulsed magnetic fields and designs a device for stress elimination in large aluminum rings. Initial validation through bulging experiments on 6061 aluminum alloy rings (118 mm diameter) showed that the electromagnetic bulging process improves micro-deformation uniformity, promotes dislocation motion, generates sub-grain structures, and refines grains, thereby relieving stress. A large-scale electromagnetic bulging platform was then designed for 5A06 aluminum alloy rings (717 mm diameter). In-situ experiments demonstrated that a plastic deformation of 1 % eliminated up to 84.9 % of residual stress, indicating substantial stress relief. Finally, the study compared the effectiveness of stress elimination across different surfaces under various discharge bulging modes and analyzed the reasons for these differences. This method significantly enhances the efficiency and effectiveness of residual stress elimination in large aluminum alloy rings.</div></div>\",\"PeriodicalId\":367,\"journal\":{\"name\":\"Journal of Materials Processing Technology\",\"volume\":\"338 \",\"pages\":\"Article 118778\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Processing Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924013625000688\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Processing Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924013625000688","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Relaxation of residual stress in aluminum alloy rings by pulsed high magnetic field: Relieving mechanisms and performance evaluation
Residual stress is commonly present in metal components, potentially leading to structural instability and reduced strength. Thus, effective elimination of residual stress is essential in manufacturing large metal components. Traditional methods for stress relief include energy-based and mechanical approaches. However, energy-based methods are time-consuming and can weaken component strength, while mechanical methods may damage contact surfaces and cause localized stress concentrations. This paper introduces a novel technique for relaxing residual stress using pulsed high magnetic fields. The method applies a pulsed magnetic field to the ring’s inner surface, inducing a strong, non-contact Lorentz force that triggers slight plastic deformation, releasing residual stress in the elastic regions. Remarkably, the process takes only a few milliseconds. The study examines the mechanisms behind residual stress relief via pulsed magnetic fields and designs a device for stress elimination in large aluminum rings. Initial validation through bulging experiments on 6061 aluminum alloy rings (118 mm diameter) showed that the electromagnetic bulging process improves micro-deformation uniformity, promotes dislocation motion, generates sub-grain structures, and refines grains, thereby relieving stress. A large-scale electromagnetic bulging platform was then designed for 5A06 aluminum alloy rings (717 mm diameter). In-situ experiments demonstrated that a plastic deformation of 1 % eliminated up to 84.9 % of residual stress, indicating substantial stress relief. Finally, the study compared the effectiveness of stress elimination across different surfaces under various discharge bulging modes and analyzed the reasons for these differences. This method significantly enhances the efficiency and effectiveness of residual stress elimination in large aluminum alloy rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Processing Technology
Journal of Materials Processing Technology 工程技术-材料科学:综合
CiteScore
12.60
自引率
4.80%
发文量
403
审稿时长
29 days
期刊介绍: The Journal of Materials Processing Technology covers the processing techniques used in manufacturing components from metals and other materials. The journal aims to publish full research papers of original, significant and rigorous work and so to contribute to increased production efficiency and improved component performance. Areas of interest to the journal include: • Casting, forming and machining • Additive processing and joining technologies • The evolution of material properties under the specific conditions met in manufacturing processes • Surface engineering when it relates specifically to a manufacturing process • Design and behavior of equipment and tools.
期刊最新文献
Comprehensive regulation of carbon nanotubes on laser welded joints of aluminum alloy: From morphology, solidification, microtexture to properties Localized high-temperature laser shock peening with adjustable metallic coatings method for mechanical properties enhancement of reflective aluminum alloys Imprinting nanostructures on metallic surface via underwater electrical wire explosion shock waves Enhanced strength-ductility of deposited Al-Mg-Sc alloy through interlayer hammering and in-situ heating Ultrafast laser micro-texturing of joining surface combined with ultrasonic vibration-assisted friction stir joining to fabricate Zr-based metallic glass parts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1