一个新的浮尸智人远端腓骨片段,以及对该物种近端和远端腓骨形态的首次定量比较分析。

IF 1.8 3区 医学 Q2 ANATOMY & MORPHOLOGY Journal of Anatomy Pub Date : 2025-02-18 DOI:10.1111/joa.14194
Annalisa Pietrobelli, Damiano Marchi, Sofwan Noerwidi, Nico Alamsyah, Thomas Sutikna, Tracy L Kivell, Matthew M Skinner, Matthew W Tocheri
{"title":"一个新的浮尸智人远端腓骨片段,以及对该物种近端和远端腓骨形态的首次定量比较分析。","authors":"Annalisa Pietrobelli, Damiano Marchi, Sofwan Noerwidi, Nico Alamsyah, Thomas Sutikna, Tracy L Kivell, Matthew M Skinner, Matthew W Tocheri","doi":"10.1111/joa.14194","DOIUrl":null,"url":null,"abstract":"<p><p>The hindlimb skeleton of the holotype (LB1) of Homo floresiensis is relatively complete and includes both fibulae, which despite being well preserved have yet to be subject to a quantitative comparative analysis with other hominids. A new distal fragment of a fibula has also been recovered from the H. floresiensis-bearing sediments at Liang Bua (Flores, Indonesia). In this study, we used 3D geometric morphometrics (3DGM) to quantify detailed aspects of the external shape and articular facet morphology of the proximal and distal ends of these H. floresiensis fibulae. The comparative sample included fibulae from 57 extant great apes (Pongo, Gorilla, and Pan), 41 recent and fossil Homo sapiens, five Australopithecus afarensis, and five Neandertals. Shape variation was analyzed using principal component analysis of Procrustes coordinates, and mean differences among taxa were tested using a Procrustes ANOVA with a randomization procedure. Size comparisons were made using centroid size and tested via correlations with principal component scores. Results demonstrate that H. floresiensis fibulae possess the absolute smallest mean linear dimensions and mean centroid sizes among our comparative sample. The proximal and distal fibular ends of H. floresiensis exhibit four key features adapted for obligate bipedalism while also displaying a suite of plesiomorphic traits shared with extant great apes and A. afarensis that, compared with that of H. sapiens and Neandertals, suggest a more versatile ankle joint with a greater range of motion and enhanced load-bearing capabilities of the fibula. Our results are consistent with other aspects of the H. floresiensis lower limb, such as long feet relative to the femur and a long forefoot relative to the hindfoot, that together suggest an australopith-like locomotor repertoire that included both obligate bipedalism and climbing.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A new distal fibular fragment of Homo floresiensis and the first quantitative comparative analysis of proximal and distal fibular morphology in this species.\",\"authors\":\"Annalisa Pietrobelli, Damiano Marchi, Sofwan Noerwidi, Nico Alamsyah, Thomas Sutikna, Tracy L Kivell, Matthew M Skinner, Matthew W Tocheri\",\"doi\":\"10.1111/joa.14194\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The hindlimb skeleton of the holotype (LB1) of Homo floresiensis is relatively complete and includes both fibulae, which despite being well preserved have yet to be subject to a quantitative comparative analysis with other hominids. A new distal fragment of a fibula has also been recovered from the H. floresiensis-bearing sediments at Liang Bua (Flores, Indonesia). In this study, we used 3D geometric morphometrics (3DGM) to quantify detailed aspects of the external shape and articular facet morphology of the proximal and distal ends of these H. floresiensis fibulae. The comparative sample included fibulae from 57 extant great apes (Pongo, Gorilla, and Pan), 41 recent and fossil Homo sapiens, five Australopithecus afarensis, and five Neandertals. Shape variation was analyzed using principal component analysis of Procrustes coordinates, and mean differences among taxa were tested using a Procrustes ANOVA with a randomization procedure. Size comparisons were made using centroid size and tested via correlations with principal component scores. Results demonstrate that H. floresiensis fibulae possess the absolute smallest mean linear dimensions and mean centroid sizes among our comparative sample. The proximal and distal fibular ends of H. floresiensis exhibit four key features adapted for obligate bipedalism while also displaying a suite of plesiomorphic traits shared with extant great apes and A. afarensis that, compared with that of H. sapiens and Neandertals, suggest a more versatile ankle joint with a greater range of motion and enhanced load-bearing capabilities of the fibula. Our results are consistent with other aspects of the H. floresiensis lower limb, such as long feet relative to the femur and a long forefoot relative to the hindfoot, that together suggest an australopith-like locomotor repertoire that included both obligate bipedalism and climbing.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14194\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14194","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new distal fibular fragment of Homo floresiensis and the first quantitative comparative analysis of proximal and distal fibular morphology in this species.

The hindlimb skeleton of the holotype (LB1) of Homo floresiensis is relatively complete and includes both fibulae, which despite being well preserved have yet to be subject to a quantitative comparative analysis with other hominids. A new distal fragment of a fibula has also been recovered from the H. floresiensis-bearing sediments at Liang Bua (Flores, Indonesia). In this study, we used 3D geometric morphometrics (3DGM) to quantify detailed aspects of the external shape and articular facet morphology of the proximal and distal ends of these H. floresiensis fibulae. The comparative sample included fibulae from 57 extant great apes (Pongo, Gorilla, and Pan), 41 recent and fossil Homo sapiens, five Australopithecus afarensis, and five Neandertals. Shape variation was analyzed using principal component analysis of Procrustes coordinates, and mean differences among taxa were tested using a Procrustes ANOVA with a randomization procedure. Size comparisons were made using centroid size and tested via correlations with principal component scores. Results demonstrate that H. floresiensis fibulae possess the absolute smallest mean linear dimensions and mean centroid sizes among our comparative sample. The proximal and distal fibular ends of H. floresiensis exhibit four key features adapted for obligate bipedalism while also displaying a suite of plesiomorphic traits shared with extant great apes and A. afarensis that, compared with that of H. sapiens and Neandertals, suggest a more versatile ankle joint with a greater range of motion and enhanced load-bearing capabilities of the fibula. Our results are consistent with other aspects of the H. floresiensis lower limb, such as long feet relative to the femur and a long forefoot relative to the hindfoot, that together suggest an australopith-like locomotor repertoire that included both obligate bipedalism and climbing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Anatomy
Journal of Anatomy 医学-解剖学与形态学
CiteScore
4.80
自引率
8.30%
发文量
183
审稿时长
4-8 weeks
期刊介绍: Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system. Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract. We particularly welcome submissions in the following areas: Cell biology and tissue architecture Comparative functional morphology Developmental biology Evolutionary developmental biology Evolutionary morphology Functional human anatomy Integrative vertebrate paleontology Methodological innovations in anatomical research Musculoskeletal system Neuroanatomy and neurodegeneration Significant advances in anatomical education.
期刊最新文献
Skin development in the gray short-tailed opossum (Monodelphis domestica)-From skin respiration to thermoregulation. A new distal fibular fragment of Homo floresiensis and the first quantitative comparative analysis of proximal and distal fibular morphology in this species. Palaeobiology and osteohistology of South African sauropodomorph dinosaurs. Issue Information Issue Cover (March 2025)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1