IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2025-02-19 DOI:10.1002/aenm.202405183
Yu Wu, Wenjie Zhang, Xinyu Rui, Dongsheng Ren, Chengshan Xu, Xiang Liu, Xuning Feng, Zhuang Ma, Languang Lu, Minggao Ouyang
{"title":"Thermal Runaway Mechanism of Composite Cathodes for All‐Solid‐State Batteries","authors":"Yu Wu, Wenjie Zhang, Xinyu Rui, Dongsheng Ren, Chengshan Xu, Xiang Liu, Xuning Feng, Zhuang Ma, Languang Lu, Minggao Ouyang","doi":"10.1002/aenm.202405183","DOIUrl":null,"url":null,"abstract":"Sulfide‐based all‐solid‐state batteries (ASSBs) are widely recognized as one of the most promising next‐generation energy storage technologies. High‐mass‐loaded composite cathode is crucial for the electrochemical performance of ASSBs. However, the safety characteristics of practical composite cathodes have not been reported. Herein, the thermal runaway mechanisms of composite cathodes under different pressures are systematically revealed by employing pellet pressing of the LiNi<jats:sub>0.8</jats:sub>Co<jats:sub>0.1</jats:sub>Mn<jats:sub>0.1</jats:sub>O<jats:sub>2</jats:sub> (NCM811) and Li<jats:sub>6</jats:sub>PS<jats:sub>5</jats:sub>Cl (LPSC). Completely different from conventional safety perceptions of powder, as the compaction density of the composite cathode increases, an inert P<jats:sub>2</jats:sub>S<jats:sub>x</jats:sub> protective layer is generated in situ via the intensified the redox reactions at the interface, which inhibited exothermic reactions between the oxygen released from the NCM811 and LPSC. This work sheds light on the thermal runaway mechanisms of practical composite cathodes in sulfide‐based ASSBs, which can effectively build a bridge between academic and industrial research for the safety design of ASSBs.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"89 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2025-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202405183","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

硫化物全固态电池(ASSB)被公认为最有前途的下一代储能技术之一。高载荷复合阴极对于 ASSB 的电化学性能至关重要。然而,实用复合阴极的安全特性尚未见报道。本文通过对 LiNi0.8Co0.1Mn0.1O2 (NCM811) 和 Li6PS5Cl (LPSC) 的颗粒压制,系统地揭示了复合阴极在不同压力下的热失控机制。与传统的粉末安全观完全不同的是,随着复合阴极压制密度的增加,界面上的氧化还原反应加剧,抑制了 NCM811 和 LPSC 释放出的氧气之间的放热反应,从而在原位生成了惰性 P2Sx 保护层。这项研究揭示了硫化物基 ASSB 中实用复合阴极的热失控机制,为 ASSB 的安全设计在学术研究和工业研究之间架起了一座有效的桥梁。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Thermal Runaway Mechanism of Composite Cathodes for All‐Solid‐State Batteries
Sulfide‐based all‐solid‐state batteries (ASSBs) are widely recognized as one of the most promising next‐generation energy storage technologies. High‐mass‐loaded composite cathode is crucial for the electrochemical performance of ASSBs. However, the safety characteristics of practical composite cathodes have not been reported. Herein, the thermal runaway mechanisms of composite cathodes under different pressures are systematically revealed by employing pellet pressing of the LiNi0.8Co0.1Mn0.1O2 (NCM811) and Li6PS5Cl (LPSC). Completely different from conventional safety perceptions of powder, as the compaction density of the composite cathode increases, an inert P2Sx protective layer is generated in situ via the intensified the redox reactions at the interface, which inhibited exothermic reactions between the oxygen released from the NCM811 and LPSC. This work sheds light on the thermal runaway mechanisms of practical composite cathodes in sulfide‐based ASSBs, which can effectively build a bridge between academic and industrial research for the safety design of ASSBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Gradient Structural Design Inducing Rocksalt Interface and P2/P3 Biphasic Bulk for Layered Oxide Cathode with Prolonged Sodium Ion Storage Bioinspired Interfacial Design of Robust Aramid Nanofiber Composite Films for High-Performance Moisture-Electric Generators Reliable Sulfur Cathode Design for All-Solid-State Lithium Metal Batteries Based on Sulfide Electrolytes Scalable, Light Rechargeable Energy Storage Based on Osmotic Effects and Photochemical Reactions in a Hair-Thin Filament Activating Inert Palmeirite Through Co Local-Environment Modulation and Spin Electrons Rearrangement for Superior Oxygen Evolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1