IF 2.7 3区 计算机科学 Q2 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems Pub Date : 2024-09-25 DOI:10.1109/TCAD.2024.3467220
Hongduo Liu;Peiyu Liao;Mengchuan Zou;Bowen Pang;Xijun Li;Mingxuan Yuan;Tsung-Yi Ho;Bei Yu
{"title":"Layout Decomposition via Boolean Satisfiability","authors":"Hongduo Liu;Peiyu Liao;Mengchuan Zou;Bowen Pang;Xijun Li;Mingxuan Yuan;Tsung-Yi Ho;Bei Yu","doi":"10.1109/TCAD.2024.3467220","DOIUrl":null,"url":null,"abstract":"Multiple patterning lithography (MPL) has been introduced in the integrated circuits manufacturing industry to enhance feature density as the technology node advances. A crucial step of MPL is assigning layout features to different masks, namely layout decomposition. Exact algorithms like integer linear programming (ILP) can solve layout decomposition to optimality but lack scalability for dense patterns. Relaxation algorithms (e.g., linear programming and semi-definite programming) and heuristics (e.g., exact cover) are capable of handling large cases at the cost of inferior solution quality. These methods rely on different mathematical solvers and expert-designed heuristics to offer a balance between solution quality and computational efficiency. In this article, we propose a unified layout decomposition framework comprising three algorithms: 1) satisfiability (SAT)-exact; 2) SAT-bilevel; and 3) SAT-fast, all leveraging the capabilities of Boolean SAT solvers. The SAT-exact ensures optimality, but with faster convergence than ILP, SAT-bilevel addresses the decomposition as a bilevel optimization problem for rapid near-optimal solutions, and SAT-fast handles very large layouts in an incremental manner. Experimental results demonstrate our framework’s superiority over existing state-of-the-art methods in terms of solution quality and runtime.","PeriodicalId":13251,"journal":{"name":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","volume":"44 3","pages":"1112-1125"},"PeriodicalIF":2.7000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10693504/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

随着技术节点的发展,集成电路制造业引入了多重图案光刻技术(MPL),以提高特征密度。MPL 的一个关键步骤是将版图特征分配给不同的掩膜,即版图分解。整数线性规划(ILP)等精确算法可以最优地解决布局分解问题,但对密集图案缺乏可扩展性。放松算法(如线性规划和半有限规划)和启发式算法(如精确覆盖)能够处理大型案例,但代价是解决方案质量较差。这些方法依赖于不同的数学求解器和专家设计的启发式算法,在求解质量和计算效率之间取得平衡。在本文中,我们提出了一个统一的布局分解框架,包括三种算法:1)精确可满足性(SAT);2)SAT-bilevel;3)SAT-fast,所有算法都利用了布尔 SAT 求解器的功能。SAT-exact 确保最优性,但收敛速度比 ILP 更快;SAT-bilevel 将分解作为一个双层优化问题来处理,以快速获得接近最优的解决方案;SAT-fast 以增量方式处理超大布局。实验结果表明,就解决方案质量和运行时间而言,我们的框架优于现有的最先进方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Layout Decomposition via Boolean Satisfiability
Multiple patterning lithography (MPL) has been introduced in the integrated circuits manufacturing industry to enhance feature density as the technology node advances. A crucial step of MPL is assigning layout features to different masks, namely layout decomposition. Exact algorithms like integer linear programming (ILP) can solve layout decomposition to optimality but lack scalability for dense patterns. Relaxation algorithms (e.g., linear programming and semi-definite programming) and heuristics (e.g., exact cover) are capable of handling large cases at the cost of inferior solution quality. These methods rely on different mathematical solvers and expert-designed heuristics to offer a balance between solution quality and computational efficiency. In this article, we propose a unified layout decomposition framework comprising three algorithms: 1) satisfiability (SAT)-exact; 2) SAT-bilevel; and 3) SAT-fast, all leveraging the capabilities of Boolean SAT solvers. The SAT-exact ensures optimality, but with faster convergence than ILP, SAT-bilevel addresses the decomposition as a bilevel optimization problem for rapid near-optimal solutions, and SAT-fast handles very large layouts in an incremental manner. Experimental results demonstrate our framework’s superiority over existing state-of-the-art methods in terms of solution quality and runtime.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.60
自引率
13.80%
发文量
500
审稿时长
7 months
期刊介绍: The purpose of this Transactions is to publish papers of interest to individuals in the area of computer-aided design of integrated circuits and systems composed of analog, digital, mixed-signal, optical, or microwave components. The aids include methods, models, algorithms, and man-machine interfaces for system-level, physical and logical design including: planning, synthesis, partitioning, modeling, simulation, layout, verification, testing, hardware-software co-design and documentation of integrated circuit and system designs of all complexities. Design tools and techniques for evaluating and designing integrated circuits and systems for metrics such as performance, power, reliability, testability, and security are a focus.
期刊最新文献
Table of Contents IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems society information IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication information Table of Contents IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems publication information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1