人类大脑图谱的选择对 ASD 分类模型性能影响的简短调查。

IF 3.2 3区 医学 Q2 NEUROSCIENCES Frontiers in Neuroscience Pub Date : 2025-02-05 eCollection Date: 2025-01-01 DOI:10.3389/fnins.2025.1497881
Naseer Ahmed Khan, Xuequn Shang
{"title":"人类大脑图谱的选择对 ASD 分类模型性能影响的简短调查。","authors":"Naseer Ahmed Khan, Xuequn Shang","doi":"10.3389/fnins.2025.1497881","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigated the impact of brain atlas selection on the classification accuracy of Autism Spectrum Disorder (ASD) models using functional Magnetic Resonance Imaging (fMRI) data. Brain atlases, such as AAL, CC200, Harvard-Oxford, and Yeo 7/17, are used to define regions of interest (ROIs) for fMRI analysis and play a crucial role in enabling researchers to study connectivity patterns and neural dynamics in ASD patients. Through a systematic review, we examined the performance of different atlases in various machine-learning and deep-learning frameworks for ASD classification. The results reveal that atlas selection significantly affects classification accuracy, with denser atlases, such as CC400, providing higher granularity, whereas coarser atlases such as AAL, offer computational efficiency. Furthermore, we discuss the dynamics of combining multiple atlases to enhance feature extraction and explore the implications of atlas selection across diverse datasets. Our findings emphasize the need for standardized approaches to atlas selection and highlight future research directions, including the integration of novel atlases, advanced data augmentation techniques, and end-to-end deep-learning models. This study provides valuable insights into optimizing fMRI-based ASD diagnosis and underscores the importance of interpreting atlas-specific features for an improved understanding of brain connectivity in ASD.</p>","PeriodicalId":12639,"journal":{"name":"Frontiers in Neuroscience","volume":"19 ","pages":"1497881"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841380/pdf/","citationCount":"0","resultStr":"{\"title\":\"A short investigation of the effect of the selection of human brain atlases on the performance of ASD's classification models.\",\"authors\":\"Naseer Ahmed Khan, Xuequn Shang\",\"doi\":\"10.3389/fnins.2025.1497881\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study investigated the impact of brain atlas selection on the classification accuracy of Autism Spectrum Disorder (ASD) models using functional Magnetic Resonance Imaging (fMRI) data. Brain atlases, such as AAL, CC200, Harvard-Oxford, and Yeo 7/17, are used to define regions of interest (ROIs) for fMRI analysis and play a crucial role in enabling researchers to study connectivity patterns and neural dynamics in ASD patients. Through a systematic review, we examined the performance of different atlases in various machine-learning and deep-learning frameworks for ASD classification. The results reveal that atlas selection significantly affects classification accuracy, with denser atlases, such as CC400, providing higher granularity, whereas coarser atlases such as AAL, offer computational efficiency. Furthermore, we discuss the dynamics of combining multiple atlases to enhance feature extraction and explore the implications of atlas selection across diverse datasets. Our findings emphasize the need for standardized approaches to atlas selection and highlight future research directions, including the integration of novel atlases, advanced data augmentation techniques, and end-to-end deep-learning models. This study provides valuable insights into optimizing fMRI-based ASD diagnosis and underscores the importance of interpreting atlas-specific features for an improved understanding of brain connectivity in ASD.</p>\",\"PeriodicalId\":12639,\"journal\":{\"name\":\"Frontiers in Neuroscience\",\"volume\":\"19 \",\"pages\":\"1497881\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2025-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11841380/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.3389/fnins.2025.1497881\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fnins.2025.1497881","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用功能性磁共振成像(fMRI)数据调查了脑图集选择对自闭症谱系障碍(ASD)模型分类准确性的影响。AAL、CC200、Harvard-Oxford 和 Yeo 7/17 等脑图谱用于定义 fMRI 分析的感兴趣区(ROI),在帮助研究人员研究 ASD 患者的连接模式和神经动态方面发挥着至关重要的作用。通过系统回顾,我们考察了不同图集在各种机器学习和深度学习框架中用于 ASD 分类的性能。结果表明,地图集的选择会显著影响分类的准确性,CC400 等密度较高的地图集能提供更高的粒度,而 AAL 等较粗糙的地图集则能提供更高的计算效率。此外,我们还讨论了结合多个地图集以加强特征提取的动态,并探讨了在不同数据集上选择地图集的影响。我们的研究结果强调了图集选择标准化方法的必要性,并突出了未来的研究方向,包括整合新型图集、先进的数据增强技术和端到端深度学习模型。这项研究为优化基于 fMRI 的 ASD 诊断提供了有价值的见解,并强调了解释图集特异性特征对于更好地理解 ASD 大脑连接性的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A short investigation of the effect of the selection of human brain atlases on the performance of ASD's classification models.

This study investigated the impact of brain atlas selection on the classification accuracy of Autism Spectrum Disorder (ASD) models using functional Magnetic Resonance Imaging (fMRI) data. Brain atlases, such as AAL, CC200, Harvard-Oxford, and Yeo 7/17, are used to define regions of interest (ROIs) for fMRI analysis and play a crucial role in enabling researchers to study connectivity patterns and neural dynamics in ASD patients. Through a systematic review, we examined the performance of different atlases in various machine-learning and deep-learning frameworks for ASD classification. The results reveal that atlas selection significantly affects classification accuracy, with denser atlases, such as CC400, providing higher granularity, whereas coarser atlases such as AAL, offer computational efficiency. Furthermore, we discuss the dynamics of combining multiple atlases to enhance feature extraction and explore the implications of atlas selection across diverse datasets. Our findings emphasize the need for standardized approaches to atlas selection and highlight future research directions, including the integration of novel atlases, advanced data augmentation techniques, and end-to-end deep-learning models. This study provides valuable insights into optimizing fMRI-based ASD diagnosis and underscores the importance of interpreting atlas-specific features for an improved understanding of brain connectivity in ASD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Neuroscience
Frontiers in Neuroscience NEUROSCIENCES-
CiteScore
6.20
自引率
4.70%
发文量
2070
审稿时长
14 weeks
期刊介绍: Neural Technology is devoted to the convergence between neurobiology and quantum-, nano- and micro-sciences. In our vision, this interdisciplinary approach should go beyond the technological development of sophisticated methods and should contribute in generating a genuine change in our discipline.
期刊最新文献
Real-time behavioral monitoring of C57BL/6J mice during reproductive cycle. Behavioral alterations in antibiotic-treated mice associated with gut microbiota dysbiosis: insights from 16S rRNA and metabolomics. Decreased scene-selective activity within the posterior intraparietal cortex in amblyopic adults. Music in the loop: a systematic review of current neurofeedback methodologies using music. Mutation in Wdr45 leads to early motor dysfunction and widespread aberrant axon terminals in a beta-propeller protein associated neurodegeneration (BPAN) patient-inspired mouse model.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1