IF 2.9 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Nanotechnology Pub Date : 2025-02-21 DOI:10.1088/1361-6528/adb8c1
Namita Bindal, Md Mahadi Rajib, Ravish Kumar Raj, Jayasimha Atulasimha, Brajesh Kumar Kaushik
{"title":"Antiferromagnetic Skyrmion based Energy-Efficient Leaky Integrate and Fire Neuron Device.","authors":"Namita Bindal, Md Mahadi Rajib, Ravish Kumar Raj, Jayasimha Atulasimha, Brajesh Kumar Kaushik","doi":"10.1088/1361-6528/adb8c1","DOIUrl":null,"url":null,"abstract":"<p><p>The development of energy-efficient neuromorphic hardware using spintronic devices based on antiferromagnetic (AFM) skyrmion motion on nanotracks has gained considerable interest. Owing to their properties such as robustness against external magnetic fields, negligible stray fields, and zero net topological charge, AFM skyrmions follow straight trajectories that prevent their annihilation at nanoscale racetrack edges. This makes the AFM skyrmions a more favorable candidate over the ferromagnetic (FM) skyrmions for future spintronic applications. This work proposes an AFM skyrmion-based neuron device exhibiting the leaky-integrate-fire (LIF) functionality by exploiting either a thermal gradient or alternatively a perpendicular magnetic anisotropy (PMA) gradient in the nanotrack for leaky behavior by moving the skyrmion in the hotter or lower PMA region, respectively to minimize the system energy. Furthermore, it is shown that the AFM skyrmion couples efficiently to the soft FM layer of a magnetic tunnel junction (MTJ) enabling efficient read-out of the skyrmion. The maximum change of 9.2% in tunnel magnetoresistance (TMR) is estimated while detecting the AFM skyrmion. Moreover, the proposed neuron device has an energy dissipation of 4.32 fJ per LIF operation thus, paving the path for developing energy-efficient devices in AFM spintronics for neuromorphic computing.</p>","PeriodicalId":19035,"journal":{"name":"Nanotechnology","volume":" ","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotechnology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/1361-6528/adb8c1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用基于纳米轨道上反铁磁(AFM)skyrmion 运动的自旋电子器件开发高能效神经形态硬件已引起人们的极大兴趣。由于 AFM skyrmions 具有对外部磁场的稳健性、可忽略不计的杂散磁场和零净拓扑电荷等特性,因此它们的运动轨迹笔直,不会在纳米级赛道边缘湮灭。这使得 AFM 天元比铁磁 (FM) 天元更适合未来的自旋电子应用。这项研究提出了一种基于原子力显微镜天元的神经元器件,该器件具有漏电积分发射(LIF)功能,它利用纳米轨道中的热梯度或垂直磁各向异性(PMA)梯度来实现漏电行为,分别将天元移动到较热或较低的 PMA 区域,从而最大限度地降低系统能量。此外,研究还表明,AFM 天融子能与磁隧道结 (MTJ) 的软调频层有效耦合,从而实现天融子的高效读出。据估计,在检测原子力显微镜天空粒子时,隧道磁阻(TMR)的最大变化为 9.2%。此外,所提出的神经元器件每次 LIF 操作的能量耗散为 4.32 fJ,从而为开发用于神经形态计算的 AFM 自旋电子学高能效器件铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Antiferromagnetic Skyrmion based Energy-Efficient Leaky Integrate and Fire Neuron Device.

The development of energy-efficient neuromorphic hardware using spintronic devices based on antiferromagnetic (AFM) skyrmion motion on nanotracks has gained considerable interest. Owing to their properties such as robustness against external magnetic fields, negligible stray fields, and zero net topological charge, AFM skyrmions follow straight trajectories that prevent their annihilation at nanoscale racetrack edges. This makes the AFM skyrmions a more favorable candidate over the ferromagnetic (FM) skyrmions for future spintronic applications. This work proposes an AFM skyrmion-based neuron device exhibiting the leaky-integrate-fire (LIF) functionality by exploiting either a thermal gradient or alternatively a perpendicular magnetic anisotropy (PMA) gradient in the nanotrack for leaky behavior by moving the skyrmion in the hotter or lower PMA region, respectively to minimize the system energy. Furthermore, it is shown that the AFM skyrmion couples efficiently to the soft FM layer of a magnetic tunnel junction (MTJ) enabling efficient read-out of the skyrmion. The maximum change of 9.2% in tunnel magnetoresistance (TMR) is estimated while detecting the AFM skyrmion. Moreover, the proposed neuron device has an energy dissipation of 4.32 fJ per LIF operation thus, paving the path for developing energy-efficient devices in AFM spintronics for neuromorphic computing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nanotechnology
Nanotechnology 工程技术-材料科学:综合
CiteScore
7.10
自引率
5.70%
发文量
820
审稿时长
2.5 months
期刊介绍: The journal aims to publish papers at the forefront of nanoscale science and technology and especially those of an interdisciplinary nature. Here, nanotechnology is taken to include the ability to individually address, control, and modify structures, materials and devices with nanometre precision, and the synthesis of such structures into systems of micro- and macroscopic dimensions such as MEMS based devices. It encompasses the understanding of the fundamental physics, chemistry, biology and technology of nanometre-scale objects and how such objects can be used in the areas of computation, sensors, nanostructured materials and nano-biotechnology.
期刊最新文献
Diamond nanoneedles for biosensing. The SiP nanotubes as potential metal-free photocatalyst: a density functional theory study. Highly sensitive refractive index sensing with a perfect MIM absorber in visible to near-infrared range. Atomic and molecular layer deposition on unconventional substrates: challenges and perspectives from energy applications. Hydrothermally designed Ag-modified TiO2heterogeneous nanocatalysts for efficient hydrogen evolution by photo/electro/photoelectro-chemical water splitting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1