解读全球变暖下印度夏季季风对厄尔尼诺/南方涛动影响预测的模型间差异

IF 3.8 2区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Geophysical Research: Atmospheres Pub Date : 2025-02-22 DOI:10.1029/2024JD042803
Shuheng Lin, Song Yang, Buwen Dong, Kaiqiang Deng, Keyan Fang
{"title":"解读全球变暖下印度夏季季风对厄尔尼诺/南方涛动影响预测的模型间差异","authors":"Shuheng Lin,&nbsp;Song Yang,&nbsp;Buwen Dong,&nbsp;Kaiqiang Deng,&nbsp;Keyan Fang","doi":"10.1029/2024JD042803","DOIUrl":null,"url":null,"abstract":"<p>The Indian summer monsoon (ISM) is intricately linked to the El Niño-Southern Oscillation (ENSO) on interannual timescale. Although previous studies have explored ENSO's effects on the ISM, the reverse influence, particularly under global warming, remains unclear. This study examines the projected changes in the ISM's impacts on ENSO under the SSP5-8.5 emission scenario using 34 climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) that reasonably simulate the monsoon's effects on ENSO. A significant spread is found in the projections across the models, with approximately half of the models projecting an enhancing influence of ISM on ENSO, whereas the other half indicates a weakening effect. The intermodel spread is primarily associated with the projected changes in the strength of the feedback between precipitation and low-level circulation over the tropical northwest Pacific, which is crucial for generating ISM-induced anomalous circulation over the region. Models projecting an enhanced precipitation-circulation feedback simulate larger ISM-driven rainfall and circulation anomalies over the tropical northwest Pacific in a warmer climate, leading to more pronounced zonal wind anomalies near the equator along the southern side of the anomalous circulation and vice versa. As a result, the larger zonal wind anomalies caused by abnormal monsoons exert intensified effects on the subsequent ENSO evolution by significantly suppressing or amplifying the atmosphere-ocean coupling processes related to ENSO development.</p>","PeriodicalId":15986,"journal":{"name":"Journal of Geophysical Research: Atmospheres","volume":"130 4","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042803","citationCount":"0","resultStr":"{\"title\":\"Deciphering the Intermodel Spread in Projections of the Impacts of Indian Summer Monsoon on ENSO Under Global Warming\",\"authors\":\"Shuheng Lin,&nbsp;Song Yang,&nbsp;Buwen Dong,&nbsp;Kaiqiang Deng,&nbsp;Keyan Fang\",\"doi\":\"10.1029/2024JD042803\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Indian summer monsoon (ISM) is intricately linked to the El Niño-Southern Oscillation (ENSO) on interannual timescale. Although previous studies have explored ENSO's effects on the ISM, the reverse influence, particularly under global warming, remains unclear. This study examines the projected changes in the ISM's impacts on ENSO under the SSP5-8.5 emission scenario using 34 climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) that reasonably simulate the monsoon's effects on ENSO. A significant spread is found in the projections across the models, with approximately half of the models projecting an enhancing influence of ISM on ENSO, whereas the other half indicates a weakening effect. The intermodel spread is primarily associated with the projected changes in the strength of the feedback between precipitation and low-level circulation over the tropical northwest Pacific, which is crucial for generating ISM-induced anomalous circulation over the region. Models projecting an enhanced precipitation-circulation feedback simulate larger ISM-driven rainfall and circulation anomalies over the tropical northwest Pacific in a warmer climate, leading to more pronounced zonal wind anomalies near the equator along the southern side of the anomalous circulation and vice versa. As a result, the larger zonal wind anomalies caused by abnormal monsoons exert intensified effects on the subsequent ENSO evolution by significantly suppressing or amplifying the atmosphere-ocean coupling processes related to ENSO development.</p>\",\"PeriodicalId\":15986,\"journal\":{\"name\":\"Journal of Geophysical Research: Atmospheres\",\"volume\":\"130 4\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-02-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JD042803\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Atmospheres\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042803\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Atmospheres","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JD042803","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deciphering the Intermodel Spread in Projections of the Impacts of Indian Summer Monsoon on ENSO Under Global Warming

The Indian summer monsoon (ISM) is intricately linked to the El Niño-Southern Oscillation (ENSO) on interannual timescale. Although previous studies have explored ENSO's effects on the ISM, the reverse influence, particularly under global warming, remains unclear. This study examines the projected changes in the ISM's impacts on ENSO under the SSP5-8.5 emission scenario using 34 climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) that reasonably simulate the monsoon's effects on ENSO. A significant spread is found in the projections across the models, with approximately half of the models projecting an enhancing influence of ISM on ENSO, whereas the other half indicates a weakening effect. The intermodel spread is primarily associated with the projected changes in the strength of the feedback between precipitation and low-level circulation over the tropical northwest Pacific, which is crucial for generating ISM-induced anomalous circulation over the region. Models projecting an enhanced precipitation-circulation feedback simulate larger ISM-driven rainfall and circulation anomalies over the tropical northwest Pacific in a warmer climate, leading to more pronounced zonal wind anomalies near the equator along the southern side of the anomalous circulation and vice versa. As a result, the larger zonal wind anomalies caused by abnormal monsoons exert intensified effects on the subsequent ENSO evolution by significantly suppressing or amplifying the atmosphere-ocean coupling processes related to ENSO development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Atmospheres
Journal of Geophysical Research: Atmospheres Earth and Planetary Sciences-Geophysics
CiteScore
7.30
自引率
11.40%
发文量
684
期刊介绍: JGR: Atmospheres publishes articles that advance and improve understanding of atmospheric properties and processes, including the interaction of the atmosphere with other components of the Earth system.
期刊最新文献
Spectral Decomposition and Signal Separation of Climate Responses to Land Cover Changes Subseasonal Reversal of Extreme Cold Temperature Frequencies in Northeast China: Possible Mechanism and Prediction The Construction of 20-year Daily Surface Albedo Along PANDA Transect, Antarctica Decreasing Representativeness Scale of Nighttime Surface Temperature of Meteorological Stations in China From 2001 to 2021 Quantifying Observational Constraints in Top-Down Estimation of Terrestrial Biosphere Carbon Fluxes by CO2 Concentration and Eddy Covariance Flux Measurement Based on EnSRF and CMAQ
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1