Yujie Liu, Li Kang, Jing Luo, Minglei Yang, Da Wang, Juelan Ye, Xinghai Yang, Wei Wan, Jiemin Wong, Jianru Xiao
{"title":"靶向 AKT 是治疗 SOX2 阳性、化疗耐药骨肉瘤的有效策略","authors":"Yujie Liu, Li Kang, Jing Luo, Minglei Yang, Da Wang, Juelan Ye, Xinghai Yang, Wei Wan, Jiemin Wong, Jianru Xiao","doi":"10.1038/s41413-024-00395-9","DOIUrl":null,"url":null,"abstract":"<p>Osteosarcoma (OS) is the most prevalent type of primary malignant bone cancer and currently lacks effective targeted treatments. Increasing evidence indicates that SOX2 overexpression is a primary driver of OS. By screening a small-molecule kinase inhibitor library, we identified AKT as a kinase essential for robust SOX2 expression in OS cells. AKT was found to be frequently overexpressed in OS and positively correlated with SOX2 protein levels. We demonstrated that AKT has no effect on SOX2 transcription but promotes SOX2 protein stability. Mechanistically, AKT binds to and phosphorylates SOX2 at T116, preventing SOX2 ubiquitination and proteasome-dependent degradation by ubiquitin E3 ligases UBR5 and STUB1. Moreover, we found that AKT-SOX2 axis is a significant modulator of cancer stemness and chemoresistance and that the combination of AKT inhibitor MK2206 and cisplatin resulted in a synergistic and potent inhibition of OS tumor growth in the PDX model. In conclusion, we identified a critical role for AKT in promoting SOX2 overexpression, tumor stemness, and chemoresistance in OS, and provided evidence that targeting AKT combined with chemotherapy may hold promise for treating refractory OS.</p><figure><p>Working model showing that AKT stabilizes SOX2 by phosphorylating T116 site. Phosphorylation by AKT restraints the binding and ubiquitinoylation of SOX2 by the UBR5 and STUB1, thus promoting SOX2 stability and tumorigenic activity. Targeting AKT by MK2206 inhibits T116 phosphorylation and promotes SOX2 ubiquitination pathway, which impairs SOX2 tumorigenic activity. A combined treatment with chemo reagent and AKT inhibitor could achieve better therapeutic effect for SOX2-positive OS.</p></figure>","PeriodicalId":9134,"journal":{"name":"Bone Research","volume":"30 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Targeting AKT as a promising strategy for SOX2-positive, chemoresistant osteosarcoma\",\"authors\":\"Yujie Liu, Li Kang, Jing Luo, Minglei Yang, Da Wang, Juelan Ye, Xinghai Yang, Wei Wan, Jiemin Wong, Jianru Xiao\",\"doi\":\"10.1038/s41413-024-00395-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Osteosarcoma (OS) is the most prevalent type of primary malignant bone cancer and currently lacks effective targeted treatments. Increasing evidence indicates that SOX2 overexpression is a primary driver of OS. By screening a small-molecule kinase inhibitor library, we identified AKT as a kinase essential for robust SOX2 expression in OS cells. AKT was found to be frequently overexpressed in OS and positively correlated with SOX2 protein levels. We demonstrated that AKT has no effect on SOX2 transcription but promotes SOX2 protein stability. Mechanistically, AKT binds to and phosphorylates SOX2 at T116, preventing SOX2 ubiquitination and proteasome-dependent degradation by ubiquitin E3 ligases UBR5 and STUB1. Moreover, we found that AKT-SOX2 axis is a significant modulator of cancer stemness and chemoresistance and that the combination of AKT inhibitor MK2206 and cisplatin resulted in a synergistic and potent inhibition of OS tumor growth in the PDX model. In conclusion, we identified a critical role for AKT in promoting SOX2 overexpression, tumor stemness, and chemoresistance in OS, and provided evidence that targeting AKT combined with chemotherapy may hold promise for treating refractory OS.</p><figure><p>Working model showing that AKT stabilizes SOX2 by phosphorylating T116 site. Phosphorylation by AKT restraints the binding and ubiquitinoylation of SOX2 by the UBR5 and STUB1, thus promoting SOX2 stability and tumorigenic activity. Targeting AKT by MK2206 inhibits T116 phosphorylation and promotes SOX2 ubiquitination pathway, which impairs SOX2 tumorigenic activity. A combined treatment with chemo reagent and AKT inhibitor could achieve better therapeutic effect for SOX2-positive OS.</p></figure>\",\"PeriodicalId\":9134,\"journal\":{\"name\":\"Bone Research\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2025-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bone Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41413-024-00395-9\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bone Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41413-024-00395-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Targeting AKT as a promising strategy for SOX2-positive, chemoresistant osteosarcoma
Osteosarcoma (OS) is the most prevalent type of primary malignant bone cancer and currently lacks effective targeted treatments. Increasing evidence indicates that SOX2 overexpression is a primary driver of OS. By screening a small-molecule kinase inhibitor library, we identified AKT as a kinase essential for robust SOX2 expression in OS cells. AKT was found to be frequently overexpressed in OS and positively correlated with SOX2 protein levels. We demonstrated that AKT has no effect on SOX2 transcription but promotes SOX2 protein stability. Mechanistically, AKT binds to and phosphorylates SOX2 at T116, preventing SOX2 ubiquitination and proteasome-dependent degradation by ubiquitin E3 ligases UBR5 and STUB1. Moreover, we found that AKT-SOX2 axis is a significant modulator of cancer stemness and chemoresistance and that the combination of AKT inhibitor MK2206 and cisplatin resulted in a synergistic and potent inhibition of OS tumor growth in the PDX model. In conclusion, we identified a critical role for AKT in promoting SOX2 overexpression, tumor stemness, and chemoresistance in OS, and provided evidence that targeting AKT combined with chemotherapy may hold promise for treating refractory OS.
Working model showing that AKT stabilizes SOX2 by phosphorylating T116 site. Phosphorylation by AKT restraints the binding and ubiquitinoylation of SOX2 by the UBR5 and STUB1, thus promoting SOX2 stability and tumorigenic activity. Targeting AKT by MK2206 inhibits T116 phosphorylation and promotes SOX2 ubiquitination pathway, which impairs SOX2 tumorigenic activity. A combined treatment with chemo reagent and AKT inhibitor could achieve better therapeutic effect for SOX2-positive OS.
期刊介绍:
Established in 2013, Bone Research is a newly-founded English-language periodical that centers on the basic and clinical facets of bone biology, pathophysiology, and regeneration. It is dedicated to championing key findings emerging from both basic investigations and clinical research concerning bone-related topics. The journal's objective is to globally disseminate research in bone-related physiology, pathology, diseases, and treatment, contributing to the advancement of knowledge in this field.