城市交叉口交通流量预测:利用时空图神经网络算法的物理引导逐步框架

Yuyan Annie Pan , Fuliang Li , Anran Li , Zhiqiang Niu , Zhen Liu
{"title":"城市交叉口交通流量预测:利用时空图神经网络算法的物理引导逐步框架","authors":"Yuyan Annie Pan ,&nbsp;Fuliang Li ,&nbsp;Anran Li ,&nbsp;Zhiqiang Niu ,&nbsp;Zhen Liu","doi":"10.1016/j.multra.2025.100207","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate traffic flow forecasting at urban intersections is critical for optimizing transportation infrastructure and reducing congestion. This manuscript introduces a novel framework, the Physics-Guided Spatio-Temporal Graph Neural Network (PG-STGNN), specifically designed for traffic flow prediction. By integrating the principles of traffic flow physics with advanced spatio-temporal graph neural network algorithms, the framework captures complex spatio-temporal dependencies in traffic networks. PG-STGNN adopts a stepwise approach, addressing key performance metrics like queue formation and signal timing complexities at intersections. To validate its effectiveness, the model was applied to real-world traffic data from the Yizhuang District of Beijing. Compared to traditional models such as ARIMA, KNN, and Random Forest, PG-STGNN significantly improves prediction accuracy, achieving MAPE reductions of 19.9 %, 18.6 %, 6.1 %, 20.7 %, 5.0 %, 1.8 %, and 1.1 % against KNN, ARIMA, RF, BP, T-GCN, STGCN, and ST-ED-RMGC, respectively. With the lowest MAPE (9.452 %), MAE (2.485), and RMSE (4.364), PG-STGNN demonstrates superior prediction performance. These results underscore its potential to provide reliable short-term traffic forecasts, offering essential insights for the strategic planning and management of urban intelligent transportation systems.</div></div>","PeriodicalId":100933,"journal":{"name":"Multimodal Transportation","volume":"4 2","pages":"Article 100207"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Urban intersection traffic flow prediction: A physics-guided stepwise framework utilizing spatio-temporal graph neural network algorithms\",\"authors\":\"Yuyan Annie Pan ,&nbsp;Fuliang Li ,&nbsp;Anran Li ,&nbsp;Zhiqiang Niu ,&nbsp;Zhen Liu\",\"doi\":\"10.1016/j.multra.2025.100207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Accurate traffic flow forecasting at urban intersections is critical for optimizing transportation infrastructure and reducing congestion. This manuscript introduces a novel framework, the Physics-Guided Spatio-Temporal Graph Neural Network (PG-STGNN), specifically designed for traffic flow prediction. By integrating the principles of traffic flow physics with advanced spatio-temporal graph neural network algorithms, the framework captures complex spatio-temporal dependencies in traffic networks. PG-STGNN adopts a stepwise approach, addressing key performance metrics like queue formation and signal timing complexities at intersections. To validate its effectiveness, the model was applied to real-world traffic data from the Yizhuang District of Beijing. Compared to traditional models such as ARIMA, KNN, and Random Forest, PG-STGNN significantly improves prediction accuracy, achieving MAPE reductions of 19.9 %, 18.6 %, 6.1 %, 20.7 %, 5.0 %, 1.8 %, and 1.1 % against KNN, ARIMA, RF, BP, T-GCN, STGCN, and ST-ED-RMGC, respectively. With the lowest MAPE (9.452 %), MAE (2.485), and RMSE (4.364), PG-STGNN demonstrates superior prediction performance. These results underscore its potential to provide reliable short-term traffic forecasts, offering essential insights for the strategic planning and management of urban intelligent transportation systems.</div></div>\",\"PeriodicalId\":100933,\"journal\":{\"name\":\"Multimodal Transportation\",\"volume\":\"4 2\",\"pages\":\"Article 100207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Multimodal Transportation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772586325000218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multimodal Transportation","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772586325000218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测城市交叉口的交通流量对于优化交通基础设施和减少拥堵至关重要。本手稿介绍了一种新颖的框架,即物理引导时空图神经网络(PG-STGNN),专门用于交通流预测。通过将交通流物理学原理与先进的时空图神经网络算法相结合,该框架可捕捉交通网络中复杂的时空依赖关系。PG-STGNN 采用循序渐进的方法,解决了交叉口队列形成和信号配时复杂性等关键性能指标。为验证其有效性,该模型被应用于北京亦庄地区的实际交通数据。与 ARIMA、KNN 和随机森林等传统模型相比,PG-STGNN 显著提高了预测精度,与 KNN、ARIMA、RF、BP、T-GCN、STGCN 和 ST-ED-RMGC 相比,MAPE 分别降低了 19.9%、18.6%、6.1%、20.7%、5.0%、1.8% 和 1.1%。PG-STGNN 的 MAPE (9.452 %)、MAE (2.485) 和 RMSE (4.364) 最低,显示出卓越的预测性能。这些结果凸显了 PG-STGNN 在提供可靠的短期交通预测方面的潜力,为城市智能交通系统的战略规划和管理提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Urban intersection traffic flow prediction: A physics-guided stepwise framework utilizing spatio-temporal graph neural network algorithms
Accurate traffic flow forecasting at urban intersections is critical for optimizing transportation infrastructure and reducing congestion. This manuscript introduces a novel framework, the Physics-Guided Spatio-Temporal Graph Neural Network (PG-STGNN), specifically designed for traffic flow prediction. By integrating the principles of traffic flow physics with advanced spatio-temporal graph neural network algorithms, the framework captures complex spatio-temporal dependencies in traffic networks. PG-STGNN adopts a stepwise approach, addressing key performance metrics like queue formation and signal timing complexities at intersections. To validate its effectiveness, the model was applied to real-world traffic data from the Yizhuang District of Beijing. Compared to traditional models such as ARIMA, KNN, and Random Forest, PG-STGNN significantly improves prediction accuracy, achieving MAPE reductions of 19.9 %, 18.6 %, 6.1 %, 20.7 %, 5.0 %, 1.8 %, and 1.1 % against KNN, ARIMA, RF, BP, T-GCN, STGCN, and ST-ED-RMGC, respectively. With the lowest MAPE (9.452 %), MAE (2.485), and RMSE (4.364), PG-STGNN demonstrates superior prediction performance. These results underscore its potential to provide reliable short-term traffic forecasts, offering essential insights for the strategic planning and management of urban intelligent transportation systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy reliability theory analysis of traffic signal lamp performance The evolving dynamics of airport ground access: A multinomial logit analysis of mode choice at Guwahati Airport, India Urban intersection traffic flow prediction: A physics-guided stepwise framework utilizing spatio-temporal graph neural network algorithms On the safety effects of off-peak hour speed characteristics of urban arterials Exploring shared e-scooter trip patterns and links to public transport service level
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1