IF 5.8 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2025-02-25 DOI:10.1016/j.combustflame.2025.114058
Gautham Vadlamudi , Balasundaram Mohan , Akhil Aravind , Saptarshi Basu
{"title":"Effect of the blast wave interaction on the flame heat release & droplet dynamics","authors":"Gautham Vadlamudi ,&nbsp;Balasundaram Mohan ,&nbsp;Akhil Aravind ,&nbsp;Saptarshi Basu","doi":"10.1016/j.combustflame.2025.114058","DOIUrl":null,"url":null,"abstract":"<div><div>The study comprehensively investigates the response of a combusting droplet during its interaction with high-speed transient flow imposed by a coaxially propagating blast wave. The blast wave is generated using a miniature shock generator which facilitates wide Mach number range (<span><math><mrow><mn>1</mn><mo>.</mo><mn>01</mn><mo>&lt;</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&lt;</mo><mn>1</mn><mo>.</mo><mn>6</mn></mrow></math></span>). The interaction of the shock flow occurs in two stages: (1) interaction of the temporally decaying velocity (<span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) imposed by the blast wave and (2) interaction with the induced flow (<span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>ind</mi></mrow></msub></math></span>). The flame base lifts off due to the imposed flow and the advection of flame base towards flame tip results in flame extinction for <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>06</mn></mrow></math></span>. The timescale of flame extinction is faster (interaction with <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span>) for <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>. The study investigates the effect on droplet regression, flame heat release rate and flame topological evolution during the interaction. The droplet regression rate gets enhanced after the interaction with blast wave for <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&lt;</mo><mn>1</mn><mo>.</mo><mn>06</mn></mrow></math></span>, while it slowed down due to complete extinction for <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>06</mn></mrow></math></span>. A momentary flame heat release rate (HRR) enhancement occurs during the interaction with shock flow, and this HRR enhancement is found to be more than 8 times the nominal unforced flame HRR for <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, where rapid flame extinction occurs due to faster interaction with <span><math><msub><mrow><mi>v</mi></mrow><mrow><mi>s</mi></mrow></msub></math></span> (<span><math><mrow><mo>∼</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow><mi>m</mi><mi>s</mi></mrow></math></span>). The HRR enhancement has been attributed to the fuel vapor accumulation during the interaction. Furthermore, for <span><math><mrow><msub><mrow><mi>M</mi></mrow><mrow><mi>s</mi></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, compressible vortex interaction occurs with the droplet resulting in droplet atomization. The droplet shows a wide range of atomization response modes ranging from pure deformation, Rayleigh–Taylor piercing bag breakup, and shear-induced stripping. No significant effect of nanoparticle (NP) addition has been found on the flame dynamics due to the faster timescales. However, minimal effects of NP addition are observed during droplet breakup due to fluid property variation.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"275 ","pages":"Article 114058"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025000963","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

该研究全面探讨了燃烧液滴在与同轴传播的冲击波施加的高速瞬态流相互作用时的响应。冲击波由微型冲击发生器产生,马赫数范围较宽(1.01<Ms<1.6)。冲击气流的相互作用分为两个阶段:(1) 冲击波施加的时间衰减速度 (vs) 的相互作用;(2) 与诱导气流 (vind) 的相互作用。由于外加流的作用,焰底升起,焰底向焰尖平流,在 Ms>1.06 时火焰熄灭。在 Ms>1.1 时,火焰熄灭的时间尺度更快(与 vs 相互作用)。研究调查了相互作用过程中对液滴回归、火焰热释放率和火焰拓扑演变的影响。对于 Ms<1.06,在与冲击波相互作用后,液滴回归率得到提高,而对于 Ms>1.06,由于完全熄灭,液滴回归率有所降低。在与冲击气流相互作用时,火焰的瞬间放热率(HRR)会提高,在Ms>1.1时,由于与VS的相互作用速度更快(∼O(10-1)ms),火焰的放热率提高了8倍多。HRR 的提高归因于相互作用过程中燃料蒸汽的积累。此外,当 Ms>1.1 时,可压缩涡流与液滴相互作用,导致液滴雾化。液滴显示出多种雾化响应模式,包括纯变形、瑞利-泰勒穿孔袋破裂和剪切诱导剥离。由于时间尺度较快,没有发现添加纳米粒子(NP)对火焰动力学有明显影响。然而,在液滴破裂过程中,由于流体性质的变化,观察到添加 NP 的影响微乎其微。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of the blast wave interaction on the flame heat release & droplet dynamics
The study comprehensively investigates the response of a combusting droplet during its interaction with high-speed transient flow imposed by a coaxially propagating blast wave. The blast wave is generated using a miniature shock generator which facilitates wide Mach number range (1.01<Ms<1.6). The interaction of the shock flow occurs in two stages: (1) interaction of the temporally decaying velocity (vs) imposed by the blast wave and (2) interaction with the induced flow (vind). The flame base lifts off due to the imposed flow and the advection of flame base towards flame tip results in flame extinction for Ms>1.06. The timescale of flame extinction is faster (interaction with vs) for Ms>1.1. The study investigates the effect on droplet regression, flame heat release rate and flame topological evolution during the interaction. The droplet regression rate gets enhanced after the interaction with blast wave for Ms<1.06, while it slowed down due to complete extinction for Ms>1.06. A momentary flame heat release rate (HRR) enhancement occurs during the interaction with shock flow, and this HRR enhancement is found to be more than 8 times the nominal unforced flame HRR for Ms>1.1, where rapid flame extinction occurs due to faster interaction with vs (O(101)ms). The HRR enhancement has been attributed to the fuel vapor accumulation during the interaction. Furthermore, for Ms>1.1, compressible vortex interaction occurs with the droplet resulting in droplet atomization. The droplet shows a wide range of atomization response modes ranging from pure deformation, Rayleigh–Taylor piercing bag breakup, and shear-induced stripping. No significant effect of nanoparticle (NP) addition has been found on the flame dynamics due to the faster timescales. However, minimal effects of NP addition are observed during droplet breakup due to fluid property variation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Flame describing function of conical laminar premixed flames subjected to parasite-velocity decoupled equivalence ratio oscillation Comparing the low-temperature oxidation chemistry of butane isomers with ozone addition: An experimental and modeling study Shock-induced drop size and distributions Validation and improvement of dimethyl ether kinetic models: Insights from ȮH laser-absorption measurements across a wide pressure range Effect of the blast wave interaction on the flame heat release & droplet dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1