非线性物理学视角和 EBV 感染的基本疾病动力学以及 EBV 相关疾病的动力学

IF 1.8 4区 生物学 Q3 BIOPHYSICS Journal of Biological Physics Pub Date : 2025-02-26 DOI:10.1007/s10867-025-09676-8
Surasak Chiangga, Saman Mongkolsakulvong, Till Daniel Frank
{"title":"非线性物理学视角和 EBV 感染的基本疾病动力学以及 EBV 相关疾病的动力学","authors":"Surasak Chiangga,&nbsp;Saman Mongkolsakulvong,&nbsp;Till Daniel Frank","doi":"10.1007/s10867-025-09676-8","DOIUrl":null,"url":null,"abstract":"<div><p>The Epstein-Barr virus affects more than 90% of the world population and, consequently, is a virus whose infection dynamics should not be overlooked. It can cause the disease infectious mononucleosis and comes with other virus-associated diseases and conditions ranging from certain cancers to episodes of fatigue and depression. While previous epidemiological and virological modeling studies have worked out the details of possible infection dynamics scenarios, the current study takes a different approach. Using a nonlinear physics perspective and a fairly general epidemiological model, we identify the essential EBV infection dynamics along its so-called infection order parameter. We demonstrate that the essential dynamics describes the initial path that EBV infections take in the multi-dimensional model space. In particular, we show that the essential dynamics predicts the initial dynamics of the relevant subpopulations and describes how the subpopulations involved in an EBV infection outbreak organize themselves during the outbreak. Intervention and prevention measures are discussed in the context of the nonlinear physics perspective. An adverse synergy effect between two infection rate parameters is identified. An early warning system based on the so-called critical slowing down phenomenon is proposed for EBV infection waves in college and university student populations, which are populations particularly vulnerable to EBV infections.</p></div>","PeriodicalId":612,"journal":{"name":"Journal of Biological Physics","volume":"51 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear physics perspective and essential disease dynamics of EBV infections and the dynamics of EBV-associated diseases\",\"authors\":\"Surasak Chiangga,&nbsp;Saman Mongkolsakulvong,&nbsp;Till Daniel Frank\",\"doi\":\"10.1007/s10867-025-09676-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Epstein-Barr virus affects more than 90% of the world population and, consequently, is a virus whose infection dynamics should not be overlooked. It can cause the disease infectious mononucleosis and comes with other virus-associated diseases and conditions ranging from certain cancers to episodes of fatigue and depression. While previous epidemiological and virological modeling studies have worked out the details of possible infection dynamics scenarios, the current study takes a different approach. Using a nonlinear physics perspective and a fairly general epidemiological model, we identify the essential EBV infection dynamics along its so-called infection order parameter. We demonstrate that the essential dynamics describes the initial path that EBV infections take in the multi-dimensional model space. In particular, we show that the essential dynamics predicts the initial dynamics of the relevant subpopulations and describes how the subpopulations involved in an EBV infection outbreak organize themselves during the outbreak. Intervention and prevention measures are discussed in the context of the nonlinear physics perspective. An adverse synergy effect between two infection rate parameters is identified. An early warning system based on the so-called critical slowing down phenomenon is proposed for EBV infection waves in college and university student populations, which are populations particularly vulnerable to EBV infections.</p></div>\",\"PeriodicalId\":612,\"journal\":{\"name\":\"Journal of Biological Physics\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Physics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10867-025-09676-8\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Physics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10867-025-09676-8","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nonlinear physics perspective and essential disease dynamics of EBV infections and the dynamics of EBV-associated diseases

The Epstein-Barr virus affects more than 90% of the world population and, consequently, is a virus whose infection dynamics should not be overlooked. It can cause the disease infectious mononucleosis and comes with other virus-associated diseases and conditions ranging from certain cancers to episodes of fatigue and depression. While previous epidemiological and virological modeling studies have worked out the details of possible infection dynamics scenarios, the current study takes a different approach. Using a nonlinear physics perspective and a fairly general epidemiological model, we identify the essential EBV infection dynamics along its so-called infection order parameter. We demonstrate that the essential dynamics describes the initial path that EBV infections take in the multi-dimensional model space. In particular, we show that the essential dynamics predicts the initial dynamics of the relevant subpopulations and describes how the subpopulations involved in an EBV infection outbreak organize themselves during the outbreak. Intervention and prevention measures are discussed in the context of the nonlinear physics perspective. An adverse synergy effect between two infection rate parameters is identified. An early warning system based on the so-called critical slowing down phenomenon is proposed for EBV infection waves in college and university student populations, which are populations particularly vulnerable to EBV infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Physics
Journal of Biological Physics 生物-生物物理
CiteScore
3.00
自引率
5.60%
发文量
20
审稿时长
>12 weeks
期刊介绍: Many physicists are turning their attention to domains that were not traditionally part of physics and are applying the sophisticated tools of theoretical, computational and experimental physics to investigate biological processes, systems and materials. The Journal of Biological Physics provides a medium where this growing community of scientists can publish its results and discuss its aims and methods. It welcomes papers which use the tools of physics in an innovative way to study biological problems, as well as research aimed at providing a better understanding of the physical principles underlying biological processes.
期刊最新文献
Nonlinear physics perspective and essential disease dynamics of EBV infections and the dynamics of EBV-associated diseases Hemodynamics of asymmetrically stenotic vertebral arteries based on fluid–solid coupling Composition design and performance analysis of binary and ternary Mg-Zn-Ti alloys for biomedical implants Bioconvection of a radiating and reacting nanofluid flow past a nonlinear stretchable permeable sheet in a porous medium Effects of stalk orientation and size of trapped bead on force–velocity relation of kinesin motor determined using single molecule optical trapping methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1