通过串联催化策略将沼气封存到碳纳米纤维中

Zhenhua Xie, Erwei Huang, Kevin K. Turaczy, Samay Garg, Sooyeon Hwang, Prabhakar Reddy Kasala, Ping Liu, Jingguang G. Chen
{"title":"通过串联催化策略将沼气封存到碳纳米纤维中","authors":"Zhenhua Xie, Erwei Huang, Kevin K. Turaczy, Samay Garg, Sooyeon Hwang, Prabhakar Reddy Kasala, Ping Liu, Jingguang G. Chen","doi":"10.1038/s44286-025-00182-1","DOIUrl":null,"url":null,"abstract":"Upgrading decentralized biogas represents a sustainable route to produce valuable products while mitigating two potent greenhouse gases, namely, methane (CH4) and carbon dioxide (CO2). Conventional dry reforming of CH4 with CO2 yields syngas with low H2/CO ratios (≤1) and requires high temperatures (>800 °C) to overcome equilibrium constraints and abate coke deposition, which limits commercial implementation. Here we demonstrate the conversion of biogas into value-added carbon nanofibers via reaction integration in tandem reactors, while reducing the reaction temperature, shifting equilibrium limits and yielding H2-enriched syngas (H2/CO = 2–3) as a byproduct. Experimental and theoretical insights reveal that potassium (K) modification enhances carbon nanofiber formation due to synergistic effects via a balanced interplay between KOx-induced cobalt facets and cobalt carbide species. The energy cost and CO2 footprint analyses highlight the potential advantages of tandem processes for the sustainable upgrading of biogas into valuable solid carbon products. Upgrading biogas to valuable solid carbon can potentially lead to negative CO2 emissions with long-term carbon storage but faces substantial thermodynamic and kinetic limits using a single reactor. Tandem strategies can decouple reactions into tandem reactors, integrate non-equilibrium processes and identify synergistic catalytic sites to enhance carbon nanofiber production.","PeriodicalId":501699,"journal":{"name":"Nature Chemical Engineering","volume":"2 2","pages":"118-129"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biogas sequestration to carbon nanofibers via tandem catalytic strategies\",\"authors\":\"Zhenhua Xie, Erwei Huang, Kevin K. Turaczy, Samay Garg, Sooyeon Hwang, Prabhakar Reddy Kasala, Ping Liu, Jingguang G. Chen\",\"doi\":\"10.1038/s44286-025-00182-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Upgrading decentralized biogas represents a sustainable route to produce valuable products while mitigating two potent greenhouse gases, namely, methane (CH4) and carbon dioxide (CO2). Conventional dry reforming of CH4 with CO2 yields syngas with low H2/CO ratios (≤1) and requires high temperatures (>800 °C) to overcome equilibrium constraints and abate coke deposition, which limits commercial implementation. Here we demonstrate the conversion of biogas into value-added carbon nanofibers via reaction integration in tandem reactors, while reducing the reaction temperature, shifting equilibrium limits and yielding H2-enriched syngas (H2/CO = 2–3) as a byproduct. Experimental and theoretical insights reveal that potassium (K) modification enhances carbon nanofiber formation due to synergistic effects via a balanced interplay between KOx-induced cobalt facets and cobalt carbide species. The energy cost and CO2 footprint analyses highlight the potential advantages of tandem processes for the sustainable upgrading of biogas into valuable solid carbon products. Upgrading biogas to valuable solid carbon can potentially lead to negative CO2 emissions with long-term carbon storage but faces substantial thermodynamic and kinetic limits using a single reactor. Tandem strategies can decouple reactions into tandem reactors, integrate non-equilibrium processes and identify synergistic catalytic sites to enhance carbon nanofiber production.\",\"PeriodicalId\":501699,\"journal\":{\"name\":\"Nature Chemical Engineering\",\"volume\":\"2 2\",\"pages\":\"118-129\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Chemical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s44286-025-00182-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s44286-025-00182-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biogas sequestration to carbon nanofibers via tandem catalytic strategies
Upgrading decentralized biogas represents a sustainable route to produce valuable products while mitigating two potent greenhouse gases, namely, methane (CH4) and carbon dioxide (CO2). Conventional dry reforming of CH4 with CO2 yields syngas with low H2/CO ratios (≤1) and requires high temperatures (>800 °C) to overcome equilibrium constraints and abate coke deposition, which limits commercial implementation. Here we demonstrate the conversion of biogas into value-added carbon nanofibers via reaction integration in tandem reactors, while reducing the reaction temperature, shifting equilibrium limits and yielding H2-enriched syngas (H2/CO = 2–3) as a byproduct. Experimental and theoretical insights reveal that potassium (K) modification enhances carbon nanofiber formation due to synergistic effects via a balanced interplay between KOx-induced cobalt facets and cobalt carbide species. The energy cost and CO2 footprint analyses highlight the potential advantages of tandem processes for the sustainable upgrading of biogas into valuable solid carbon products. Upgrading biogas to valuable solid carbon can potentially lead to negative CO2 emissions with long-term carbon storage but faces substantial thermodynamic and kinetic limits using a single reactor. Tandem strategies can decouple reactions into tandem reactors, integrate non-equilibrium processes and identify synergistic catalytic sites to enhance carbon nanofiber production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self-looped electrochemical recycling of lithium-ion battery cathode materials to manufacturing feedstocks Evaluating advances in chemical engineering To mix or not to mix? The green hydrogen implementation gap Inert nano-overlay shields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1