Alejandra B Navarro-Hermosillo, Gabriel Landázuri-Gómez, J Félix Armando Soltero-Martínez, Manuel Alberto Gallardo-Sánchez, Jorge Alberto Cortes-Ortega, Carmen López-López, J Jesus Vargas-Radillo, José Guillermo Torres-Rendón, Gonzalo Canché-Escamilla, Salvador García-Enriquez, Emma Rebeca Macias-Balleza
{"title":"Obtaining and Characterizing Poly(Acid Acrylic-co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from <i>Acacia farnesiana</i> L. Willd (Huizache).","authors":"Alejandra B Navarro-Hermosillo, Gabriel Landázuri-Gómez, J Félix Armando Soltero-Martínez, Manuel Alberto Gallardo-Sánchez, Jorge Alberto Cortes-Ortega, Carmen López-López, J Jesus Vargas-Radillo, José Guillermo Torres-Rendón, Gonzalo Canché-Escamilla, Salvador García-Enriquez, Emma Rebeca Macias-Balleza","doi":"10.3390/gels11020144","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, cellulose nanocrystals (CNCs) were obtained from the wood of <i>Acacia farnesiana</i> L. Willd (Huizache) via acid hydrolysis; then, they were used to reinforce polyacrylic acid-co-acrylamide (AAc/AAm) hydrogels synthesized in a solution process via in situ free radical photopolymerization. The nanomaterials were characterized using atomic force microscopy, dynamic light scattering (DLS), and the residual charge on the CNCs; the nanohydrogels were characterized using infrared spectroscopy, scanning electron microscopy, swelling kinetics, and Young's modulus. Soluble-grade cellulose presented 94.6% α-cellulose, 0.5% β-cellulose, and 2.7% γ-cellulose, as well as a viscosity of 8.25 cp and a degree of polymerization (DP) of 706. The CNCs averaged 180 nm in length and 20 nm in width. In the nanohydrogels, it was observed that the swelling kinetic behavior followed the Schott kinetic model, at times lower than 500 h; after that, it became linear. The results show that the hydrogel swelling capacity depended on the crosslinking agent and CNC concentration, as well as the CNC chemical and morphological properties, rather than the CNC source. The hydrogels with CNCs exhibited a decreased swelling degree compared to the hydrogels without CNCs. Young's modulus increased with CNC presence and depended on the concentration and characteristics of the CNC as a crosslinking agent.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 2","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11854512/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11020144","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Obtaining and Characterizing Poly(Acid Acrylic-co-Acrylamide) Hydrogels Reinforced with Cellulose Nanocrystals from Acacia farnesiana L. Willd (Huizache).
In this work, cellulose nanocrystals (CNCs) were obtained from the wood of Acacia farnesiana L. Willd (Huizache) via acid hydrolysis; then, they were used to reinforce polyacrylic acid-co-acrylamide (AAc/AAm) hydrogels synthesized in a solution process via in situ free radical photopolymerization. The nanomaterials were characterized using atomic force microscopy, dynamic light scattering (DLS), and the residual charge on the CNCs; the nanohydrogels were characterized using infrared spectroscopy, scanning electron microscopy, swelling kinetics, and Young's modulus. Soluble-grade cellulose presented 94.6% α-cellulose, 0.5% β-cellulose, and 2.7% γ-cellulose, as well as a viscosity of 8.25 cp and a degree of polymerization (DP) of 706. The CNCs averaged 180 nm in length and 20 nm in width. In the nanohydrogels, it was observed that the swelling kinetic behavior followed the Schott kinetic model, at times lower than 500 h; after that, it became linear. The results show that the hydrogel swelling capacity depended on the crosslinking agent and CNC concentration, as well as the CNC chemical and morphological properties, rather than the CNC source. The hydrogels with CNCs exhibited a decreased swelling degree compared to the hydrogels without CNCs. Young's modulus increased with CNC presence and depended on the concentration and characteristics of the CNC as a crosslinking agent.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.