利用荧光测定法--集成表面等离子体共振对血液乙酰胆碱酯酶含量和催化活性进行双重监测

IF 4.9 3区 工程技术 Q1 CHEMISTRY, ANALYTICAL Biosensors-Basel Pub Date : 2025-02-17 DOI:10.3390/bios15020118
Yuanyuan Xie, Yifei Hou, Mengwei Hu, Hongzhuan Chen, Hao Wang, Lanxue Zhao, Jianrong Xu
{"title":"利用荧光测定法--集成表面等离子体共振对血液乙酰胆碱酯酶含量和催化活性进行双重监测","authors":"Yuanyuan Xie, Yifei Hou, Mengwei Hu, Hongzhuan Chen, Hao Wang, Lanxue Zhao, Jianrong Xu","doi":"10.3390/bios15020118","DOIUrl":null,"url":null,"abstract":"<p><p>Acetylcholinesterase inhibitors (AChEIs), particularly donepezil, are commonly used to treat mild-to-moderate Alzheimer's disease (AD). However, drug accumulation during long-term use could change AChE activity and content, leading to peripheral side effects and prompting medication discontinuation. However, there are a lack of methods to simultaneously determine the content and catalytic activity of AChE. By using phosphatidylinositol-specific phospholipase C to strip AChE from erythrocyte surfaces, we developed a novel method combining surface plasmon resonance and fluorescence detection for the simultaneous detection of AChE content and activity, producing stable, reliable, and accurate results. The established determination range spans from 263.37 ng/mL to 3000 ng/mL (4.05 nM to 46.15 nM) for concentration, and from 39.02 mU/mL to 1000 mU/mL for activity. Compared to traditional methods, this approach simplifies operations, reduces detection time, expands the dynamic range, and lowers detection limits, potentially advancing AChE-related research and supporting clinical diagnostics and drug development.</p>","PeriodicalId":48608,"journal":{"name":"Biosensors-Basel","volume":"15 2","pages":""},"PeriodicalIF":4.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853072/pdf/","citationCount":"0","resultStr":"{\"title\":\"Dual Monitoring of Blood Acetylcholinesterase Content and Catalytic Activity Utilizing Fluorometry-Integrated Surface Plasmon Resonance.\",\"authors\":\"Yuanyuan Xie, Yifei Hou, Mengwei Hu, Hongzhuan Chen, Hao Wang, Lanxue Zhao, Jianrong Xu\",\"doi\":\"10.3390/bios15020118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Acetylcholinesterase inhibitors (AChEIs), particularly donepezil, are commonly used to treat mild-to-moderate Alzheimer's disease (AD). However, drug accumulation during long-term use could change AChE activity and content, leading to peripheral side effects and prompting medication discontinuation. However, there are a lack of methods to simultaneously determine the content and catalytic activity of AChE. By using phosphatidylinositol-specific phospholipase C to strip AChE from erythrocyte surfaces, we developed a novel method combining surface plasmon resonance and fluorescence detection for the simultaneous detection of AChE content and activity, producing stable, reliable, and accurate results. The established determination range spans from 263.37 ng/mL to 3000 ng/mL (4.05 nM to 46.15 nM) for concentration, and from 39.02 mU/mL to 1000 mU/mL for activity. Compared to traditional methods, this approach simplifies operations, reduces detection time, expands the dynamic range, and lowers detection limits, potentially advancing AChE-related research and supporting clinical diagnostics and drug development.</p>\",\"PeriodicalId\":48608,\"journal\":{\"name\":\"Biosensors-Basel\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2025-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11853072/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biosensors-Basel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3390/bios15020118\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biosensors-Basel","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bios15020118","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dual Monitoring of Blood Acetylcholinesterase Content and Catalytic Activity Utilizing Fluorometry-Integrated Surface Plasmon Resonance.

Acetylcholinesterase inhibitors (AChEIs), particularly donepezil, are commonly used to treat mild-to-moderate Alzheimer's disease (AD). However, drug accumulation during long-term use could change AChE activity and content, leading to peripheral side effects and prompting medication discontinuation. However, there are a lack of methods to simultaneously determine the content and catalytic activity of AChE. By using phosphatidylinositol-specific phospholipase C to strip AChE from erythrocyte surfaces, we developed a novel method combining surface plasmon resonance and fluorescence detection for the simultaneous detection of AChE content and activity, producing stable, reliable, and accurate results. The established determination range spans from 263.37 ng/mL to 3000 ng/mL (4.05 nM to 46.15 nM) for concentration, and from 39.02 mU/mL to 1000 mU/mL for activity. Compared to traditional methods, this approach simplifies operations, reduces detection time, expands the dynamic range, and lowers detection limits, potentially advancing AChE-related research and supporting clinical diagnostics and drug development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biosensors-Basel
Biosensors-Basel Biochemistry, Genetics and Molecular Biology-Clinical Biochemistry
CiteScore
6.60
自引率
14.80%
发文量
983
审稿时长
11 weeks
期刊介绍: Biosensors (ISSN 2079-6374) provides an advanced forum for studies related to the science and technology of biosensors and biosensing. It publishes original research papers, comprehensive reviews and communications. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files and software regarding the full details of the calculation or experimental procedure, if unable to be published in a normal way, can be deposited as supplementary electronic material.
期刊最新文献
A Wide-Range, Highly Stable Intelligent Flexible Pressure Sensor Based on Micro-Wrinkled SWCNT/rGO-PDMS with Efficient Thermal Shrinkage. The Latest Advances in Microfluidic DLD Cell Sorting Technology: The Optimization of Channel Design. The Personal Glucose Meter as the Measurement Principle in Point-of-Care Applications. Autofluorescence of Red Blood Cells Infected with P. falciparum as a Preliminary Analysis of Spectral Sweeps to Predict Infection. High-Precision Field- Effect Transistor Biosensor for Analyzing Differential Effects of Anti-Cancer Drugs on Cancerous and Non-Cancerous Cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1