从无费米子回路图验证十阶 QED 对电子反常磁矩的贡献

IF 5 2区 物理与天体物理 Q1 Physics and Astronomy Physical Review D Pub Date : 2025-02-25 DOI:10.1103/physrevd.111.l031902
Tatsumi Aoyama, Masashi Hayakawa, Akira Hirayama, Makiko Nio
{"title":"从无费米子回路图验证十阶 QED 对电子反常磁矩的贡献","authors":"Tatsumi Aoyama, Masashi Hayakawa, Akira Hirayama, Makiko Nio","doi":"10.1103/physrevd.111.l031902","DOIUrl":null,"url":null,"abstract":"A discrepancy of approximately 5</a:mn>σ</a:mi></a:mrow></a:math> exists between the two known results for the tenth-order QED contribution to the anomalous magnetic moment of the electron, calculated from Feynman vertex diagrams without fermion loops. To investigate this, we decomposed this contribution into 389 parts based on a self-energy diagram representation, enabling a diagram-by-diagram numerical comparison of the two calculations. No significant discrepancies were found for individual diagrams. However, the numerical differences of the 98 diagrams sharing a common structure were not randomly distributed. The accumulation of these differences resulted in the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mn>5</c:mn><c:mi>σ</c:mi></c:mrow></c:math> discrepancy. A recalculation with increased statistics in the Monte Carlo integration was performed for these 98 diagrams. By replacing the old values with the new ones for these 98 integrals, we have obtained a revised result of <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mn>6.800</e:mn><e:mo>±</e:mo><e:mn>0.128</e:mn></e:math>, thereby resolving the discrepancy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20167,"journal":{"name":"Physical Review D","volume":"22 1","pages":""},"PeriodicalIF":5.0000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Verification of the tenth-order QED contribution to the anomalous magnetic moment of the electron from diagrams without fermion loops\",\"authors\":\"Tatsumi Aoyama, Masashi Hayakawa, Akira Hirayama, Makiko Nio\",\"doi\":\"10.1103/physrevd.111.l031902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A discrepancy of approximately 5</a:mn>σ</a:mi></a:mrow></a:math> exists between the two known results for the tenth-order QED contribution to the anomalous magnetic moment of the electron, calculated from Feynman vertex diagrams without fermion loops. To investigate this, we decomposed this contribution into 389 parts based on a self-energy diagram representation, enabling a diagram-by-diagram numerical comparison of the two calculations. No significant discrepancies were found for individual diagrams. However, the numerical differences of the 98 diagrams sharing a common structure were not randomly distributed. The accumulation of these differences resulted in the <c:math xmlns:c=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><c:mrow><c:mn>5</c:mn><c:mi>σ</c:mi></c:mrow></c:math> discrepancy. A recalculation with increased statistics in the Monte Carlo integration was performed for these 98 diagrams. By replacing the old values with the new ones for these 98 integrals, we have obtained a revised result of <e:math xmlns:e=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\"><e:mn>6.800</e:mn><e:mo>±</e:mo><e:mn>0.128</e:mn></e:math>, thereby resolving the discrepancy. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20167,\"journal\":{\"name\":\"Physical Review D\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical Review D\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevd.111.l031902\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review D","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevd.111.l031902","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Verification of the tenth-order QED contribution to the anomalous magnetic moment of the electron from diagrams without fermion loops
A discrepancy of approximately 5σ exists between the two known results for the tenth-order QED contribution to the anomalous magnetic moment of the electron, calculated from Feynman vertex diagrams without fermion loops. To investigate this, we decomposed this contribution into 389 parts based on a self-energy diagram representation, enabling a diagram-by-diagram numerical comparison of the two calculations. No significant discrepancies were found for individual diagrams. However, the numerical differences of the 98 diagrams sharing a common structure were not randomly distributed. The accumulation of these differences resulted in the 5σ discrepancy. A recalculation with increased statistics in the Monte Carlo integration was performed for these 98 diagrams. By replacing the old values with the new ones for these 98 integrals, we have obtained a revised result of 6.800±0.128, thereby resolving the discrepancy. Published by the American Physical Society 2025
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physical Review D
Physical Review D 物理-天文与天体物理
CiteScore
9.20
自引率
36.00%
发文量
0
审稿时长
2 months
期刊介绍: Physical Review D (PRD) is a leading journal in elementary particle physics, field theory, gravitation, and cosmology and is one of the top-cited journals in high-energy physics. PRD covers experimental and theoretical results in all aspects of particle physics, field theory, gravitation and cosmology, including: Particle physics experiments, Electroweak interactions, Strong interactions, Lattice field theories, lattice QCD, Beyond the standard model physics, Phenomenological aspects of field theory, general methods, Gravity, cosmology, cosmic rays, Astrophysics and astroparticle physics, General relativity, Formal aspects of field theory, field theory in curved space, String theory, quantum gravity, gauge/gravity duality.
期刊最新文献
Mass and force relations for extremal Einstein-Maxwell-dilaton-axion black holes Numerical calculation of entanglement entropy in de Sitter space Dark matter stabilized by a non-Abelian group: Lessons from the Σ(36) 3HDM Spin kinetic theory with a nonlocal relaxation time approximation Effective actions for domain wall dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1