Laura Lorini, Marta Maria Rossi, Maria Letizia Di Franca, Marianna Villano, Bruna Matturro, Marco Petrangeli Papini
{"title":"A Coupled Adsorption-Biodegradation (CAB) Process Employing a Polyhydroxybutyrate (PHB)-Biochar Mini Pilot-Scale Reactor for Trichloroethylene-Contaminated Groundwater Remediation.","authors":"Laura Lorini, Marta Maria Rossi, Maria Letizia Di Franca, Marianna Villano, Bruna Matturro, Marco Petrangeli Papini","doi":"10.3390/bioengineering12020148","DOIUrl":null,"url":null,"abstract":"<p><p>Actions for improving water quality are critical and include the remediation of polluted groundwater. The effectiveness of the remediation strategy to remove contamination by chlorinated solvents may be increased by combining physicochemical treatments (i.e., adsorption) and biological degradation (i.e., biological reductive dechlorination (BRD)). Recent studies have shown the potentialities of bio-based materials for bioremediation purposes, including polyhydroxybutyrate (PHB), a biodegradable microbial polyester tested as a fermentable source of slow-release electron donors. Further, a low-cost biochar derived from the pyrolysis of pinewood waste (PWB), used as sorbent material, has recently been proposed to accelerate reductive microbial dehalogenation. Here, we propose a coupled adsorption and biodegradation (CAB) process for trichloroethylene (TCE) removal in a mini pilot-scale reactor composed of two reactive zones, the first one filled with PHB and the second one with PWB. This work aimed to evaluate the performance of the CAB process with particular regard to the effectiveness of the PWB in sustaining the biofilm, mostly enriched by <i>Dehalococcoides mccartyi</i>. The main results showed the CAB system treated around 1300 L of contaminated water, removing 102 mg TCE per day. Combining PHB and PWB had a positive effect on the growth of the dechlorinating community with a high abundance of <i>Dhc cells.</i></p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851903/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020148","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
A Coupled Adsorption-Biodegradation (CAB) Process Employing a Polyhydroxybutyrate (PHB)-Biochar Mini Pilot-Scale Reactor for Trichloroethylene-Contaminated Groundwater Remediation.
Actions for improving water quality are critical and include the remediation of polluted groundwater. The effectiveness of the remediation strategy to remove contamination by chlorinated solvents may be increased by combining physicochemical treatments (i.e., adsorption) and biological degradation (i.e., biological reductive dechlorination (BRD)). Recent studies have shown the potentialities of bio-based materials for bioremediation purposes, including polyhydroxybutyrate (PHB), a biodegradable microbial polyester tested as a fermentable source of slow-release electron donors. Further, a low-cost biochar derived from the pyrolysis of pinewood waste (PWB), used as sorbent material, has recently been proposed to accelerate reductive microbial dehalogenation. Here, we propose a coupled adsorption and biodegradation (CAB) process for trichloroethylene (TCE) removal in a mini pilot-scale reactor composed of two reactive zones, the first one filled with PHB and the second one with PWB. This work aimed to evaluate the performance of the CAB process with particular regard to the effectiveness of the PWB in sustaining the biofilm, mostly enriched by Dehalococcoides mccartyi. The main results showed the CAB system treated around 1300 L of contaminated water, removing 102 mg TCE per day. Combining PHB and PWB had a positive effect on the growth of the dechlorinating community with a high abundance of Dhc cells.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering