Jinyan Zhou, Shuwen Wang, Hao Wang, Yaxue Li, Xiang Li
{"title":"Multi-Modality Fusion and Tumor Sub-Component Relationship Ensemble Network for Brain Tumor Segmentation.","authors":"Jinyan Zhou, Shuwen Wang, Hao Wang, Yaxue Li, Xiang Li","doi":"10.3390/bioengineering12020159","DOIUrl":null,"url":null,"abstract":"<p><p>Deep learning technology has been widely used in brain tumor segmentation with multi-modality magnetic resonance imaging, helping doctors achieve faster and more accurate diagnoses. Previous studies have demonstrated that the weighted fusion segmentation method effectively extracts modality importance, laying a solid foundation for multi-modality magnetic resonance imaging segmentation. However, the challenge of fusing multi-modality features with single-modality features remains unresolved, which motivated us to explore an effective fusion solution. We propose a multi-modality and single-modality feature recalibration network for magnetic resonance imaging brain tumor segmentation. Specifically, we designed a dual recalibration module that achieves accurate feature calibration by integrating the complementary features of multi-modality with the specific features of a single modality. Experimental results on the BraTS 2018 dataset showed that the proposed method outperformed existing multi-modal network methods across multiple evaluation metrics, with spatial recalibration significantly improving the results, including Dice score increases of 1.7%, 0.5%, and 1.6% for the enhanced tumor core, whole tumor, and tumor core regions, respectively.</p>","PeriodicalId":8874,"journal":{"name":"Bioengineering","volume":"12 2","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11851405/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/bioengineering12020159","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Multi-Modality Fusion and Tumor Sub-Component Relationship Ensemble Network for Brain Tumor Segmentation.
Deep learning technology has been widely used in brain tumor segmentation with multi-modality magnetic resonance imaging, helping doctors achieve faster and more accurate diagnoses. Previous studies have demonstrated that the weighted fusion segmentation method effectively extracts modality importance, laying a solid foundation for multi-modality magnetic resonance imaging segmentation. However, the challenge of fusing multi-modality features with single-modality features remains unresolved, which motivated us to explore an effective fusion solution. We propose a multi-modality and single-modality feature recalibration network for magnetic resonance imaging brain tumor segmentation. Specifically, we designed a dual recalibration module that achieves accurate feature calibration by integrating the complementary features of multi-modality with the specific features of a single modality. Experimental results on the BraTS 2018 dataset showed that the proposed method outperformed existing multi-modal network methods across multiple evaluation metrics, with spatial recalibration significantly improving the results, including Dice score increases of 1.7%, 0.5%, and 1.6% for the enhanced tumor core, whole tumor, and tumor core regions, respectively.
期刊介绍:
Aims
Bioengineering (ISSN 2306-5354) provides an advanced forum for the science and technology of bioengineering. It publishes original research papers, comprehensive reviews, communications and case reports. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. All aspects of bioengineering are welcomed from theoretical concepts to education and applications. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. There are, in addition, four key features of this Journal:
● We are introducing a new concept in scientific and technical publications “The Translational Case Report in Bioengineering”. It is a descriptive explanatory analysis of a transformative or translational event. Understanding that the goal of bioengineering scholarship is to advance towards a transformative or clinical solution to an identified transformative/clinical need, the translational case report is used to explore causation in order to find underlying principles that may guide other similar transformative/translational undertakings.
● Manuscripts regarding research proposals and research ideas will be particularly welcomed.
● Electronic files and software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material.
● We also accept manuscripts communicating to a broader audience with regard to research projects financed with public funds.
Scope
● Bionics and biological cybernetics: implantology; bio–abio interfaces
● Bioelectronics: wearable electronics; implantable electronics; “more than Moore” electronics; bioelectronics devices
● Bioprocess and biosystems engineering and applications: bioprocess design; biocatalysis; bioseparation and bioreactors; bioinformatics; bioenergy; etc.
● Biomolecular, cellular and tissue engineering and applications: tissue engineering; chromosome engineering; embryo engineering; cellular, molecular and synthetic biology; metabolic engineering; bio-nanotechnology; micro/nano technologies; genetic engineering; transgenic technology
● Biomedical engineering and applications: biomechatronics; biomedical electronics; biomechanics; biomaterials; biomimetics; biomedical diagnostics; biomedical therapy; biomedical devices; sensors and circuits; biomedical imaging and medical information systems; implants and regenerative medicine; neurotechnology; clinical engineering; rehabilitation engineering
● Biochemical engineering and applications: metabolic pathway engineering; modeling and simulation
● Translational bioengineering